國立中山大學114學年碩士班考試入學招生考試
科目名稱:工程數學【資工系碩士班乙組】
解答:{2x2+3x3+4x4=1x1−3x2+4x3+5x4=2−3x1+10x2−6x3−7x4=−4⇒[02341−345−310−6−7][x1x2x3x4]=[12−4]⇒[023411−3452−310−6−7−4]R3+3R2→R3→[023411−345201682]R1↔R2→[1−34520234101682]R1+3R3→R1,R2−2R3→R2→[102229800−9−12−301682]R2↔R3→[10222980168200−9−12−3](−1/9)R3→R3→[1022298016820014313]R1−22R3→R2,R2−6R3→R2→[100−1323010000014313]⇒{x1−13x4=23x2=0x3+43x4=13⇒ solutions of the system: {(23+13t,0,13−43t,t),t∈R}
解答:(2.1) det([200−3100007−320−1−62−2−11400043])=−det([00007200−31−320−1−62−2−11400043])=−7det([200−3−320−12−2−110004])=7det([0004−320−12−2−11200−3])=−28det([−3202−2−1200])=28det([2002−2−1−320])=56det([−2−120])=112(2.2) [1bb2bb2b3b2b3b4]R2−bR1→R2→[1bb2000b2b3b4]⇒det([1bb2bb2b3b2b3b4])=det([1bb2000b2b3b4])=0解答:(3.1) λ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−2,−3⇒x(t)=c1e−2t+c2e−3t⇒x′(t)=−2c1e−2t−3c2e−3t⇒{x(0)=c1+c2=2x′(0)=−2c1−3c2=3⇒{c1=9c2=−7⇒x(t)=9e−2t−7e−3t(3.2) x′(t)=−18e−2t+21e−3t=0⇒6e−2t=7e−3t⇒et=76⇒t=ln76⇒x(ln76)=9(7/6)2−7(7/6)3=3⋅6272=10849
解答:xp=Acost+Bsint⇒x′p=−Asint+Bcost⇒x″p=−Acost−Bsint⇒x″p−3x′p−4xp=(−5A−3B)cost+(3A−5B)sint=2sint⇒{−5A−3B=03A−5B=2⇒{A=3/17B=−5/17⇒xp=317cost−517sint
解答:2L{x″}+L{x′}+2L{x}=L{δ(t−5)}⇒2s2X(s)+sX(s)+2X(s)=e−5s⇒X(s)=e−5s2s2+s+2⇒x(t)=L−1{X(s)}=L−1{e−5s2s2+s+2}L−1{12s2+s+2}=L−1{12⋅1(s+14)2+1516}=12e−t/4⋅4√15sin√15t4=2√15e−t/4sin√15t4⇒L−1{e−5s2s2+s+2}=x(t)=2√15e−(t−5)/4sin√15(t−5)4u(t−5)
解答:\textbf{(6.1)
(6.2) f(−x)=−f(x)⇒f(x) is odd ⇒an=0bn=4π∫π/202x2sin(2nx)dx=8π⋅((14n3−π28n)(−1)n−14n3)=(2n3π−πn)(−1)n−2n3π⇒f(x)=∞∑n=1((2n3π−πn)(−1)n−2n3π)sin(2nx)
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言