臺灣警察專科學校 114學年度專科警員班第44期正期學生組新生入學考試甲組數學科
※注意:(一)本科目為單選題,共 40 題,每題 2.5 分,計 100 分。
(二)未作答者不給分,答錯者不倒扣。
(三)請將正確答案以 2B 鉛筆劃記於答案卡內。
解答:$$\sqrt{7+\sqrt{48}} =\sqrt{7+ 2\sqrt{12}} = \sqrt{(\sqrt 4+\sqrt 3)^2} =\sqrt{4}+\sqrt 3 =2+\sqrt 3\\ \Rightarrow 3\lt a\lt 4,故選\bbox[red, 2pt]{(C)}$$解答:$$a=\begin{vmatrix}113& 2025\\ 1& 114 \end{vmatrix} =113\times 114-2025\\ (A) \times:\begin{vmatrix}2025& 113 \\ 114&1 \end{vmatrix} = 2025-113\times 114 =-a \\(B) \bigcirc:\begin{vmatrix}114& 1\\ 2025& 113 \end{vmatrix} =114\times 113-2025 =a\\(C) \times: \begin{vmatrix}1 & 114\\ 113& 2025 \end{vmatrix} =2025-114\times 113 =-a\\(D) \times: \begin{vmatrix}113 \times 2& 2025 \times 2\\ 1& 114 \end{vmatrix} =113\times 114\times 2-2025\times 2 =2a\\,故選\bbox[red, 2pt]{(B)}$$
解答:$${|15-25|\over \sqrt{4^2+3^2}} ={10\over 5}=2,故選\bbox[red, 2pt]{(B)}$$
解答:$$f(x) =(x-1)^3+(x-1) \Rightarrow f(x+1) =x^3+x,故選\bbox[red, 2pt]{(A)}$$
解答:$$(A) \times: a_3=6 \ne 2\times a_2=2\times 2\\ (B)\times: a_4=15 \ne a_3+4=6+4\\ (C) \times: a_4=15 \ne a_3+3\cdot 3-2=13\\,故選\bbox[red, 2pt]{(D)}$$
解答:$$\cases{A(3,0) \\B(4,2) \\C(1,5)} \Rightarrow \cases{\overrightarrow{AB} =(1,2) \\ \overrightarrow{AC} =(-2,5)} \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} =-2+10=8,故選\bbox[red, 2pt]{(B)}$$
解答:$$與直線3x+4y=0垂直的直線: 4x-3y=k,經過(3,-1) \Rightarrow 12+3=15=k\\ \Rightarrow 4x-3y=15,故選\bbox[red, 2pt]{(A)}$$

解答:$$-1+\log x=\log 100=2\Rightarrow \log x=3 \Rightarrow x=10^3=1000,故選\bbox[red, 2pt]{(A)}$$

解答:$$公差d=a_2-a_1=23-35=-12 \Rightarrow a_k=35-12(k-1) =47-12k\ge 0 \Rightarrow k\le 3 \\ \Rightarrow S_k有最大值,此時k=3,故選\bbox[red, 2pt]{(C)}$$

解答:$$\cases{\log a=20 \Rightarrow a=10^{20} \\ \log b=16 \Rightarrow b=10^{16}}\Rightarrow \log(a-b)= \log(10^{20} -10^{16}) =19.XXX,故選\bbox[red, 2pt]{(D)}$$

解答:$$|\vec u-\vec v|^2=16+49=65 =(\vec u-\vec v)\cdot (\vec u-\vec v) =|\vec u|^2+0+0+|\vec v|^2 =36+|\vec v|^2 \\ \Rightarrow |\vec v|^2=29 \Rightarrow |\vec v|=\sqrt{29},故選\bbox[red, 2pt]{(B)}$$

解答:$$相關係數 是用標準計分計算的,不管原來是什麼單位,標準化後分子分母的單位相互抵銷\\,故選\bbox[red, 2pt]{(A)}$$
解答:$$A\begin{bmatrix} 1\\0\end{bmatrix}=\begin{bmatrix}a\\b\\c \end{bmatrix}=\begin{bmatrix}4\\-2\\3 \end{bmatrix} \Rightarrow a+b+c=5,故選\bbox[red, 2pt]{(A)}$$
解答:$$假設正立方體的邊長為a \Rightarrow \overline{AC}=\sqrt 2a \Rightarrow \overline{CE}=\sqrt 3a =3 \Rightarrow a=\sqrt 3\\ \Rightarrow \left| \left(\overrightarrow{AE} \times \overrightarrow{AD} \right) \cdot \overrightarrow{AB}\right| =立方體體積=(\sqrt 3)^3=3\sqrt 3\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$P為在x軸上\Rightarrow P(a,0,0) \Rightarrow \overline{AP}^2 +\overline{BP}^2=(a-4)^2+3^2+6^2 +(a-2)^2+1^2+(-4)^2 \\=f(a)=2a^2-12a+82 \Rightarrow f'(a)=4a-12=0\Rightarrow a=3 \Rightarrow f(3)=18-36+82= 64,故選\bbox[red, 2pt]{(B)}$$
解答:$$假設正\triangle OAB邊長為a \Rightarrow \cases{A(a,0)\\ B(a/2,\sqrt 3a/2)} \Rightarrow \cases{ \begin{bmatrix} -1& 0\\ 0& 1\end{bmatrix} \begin{bmatrix} a\\ 0\end{bmatrix}= \begin{bmatrix} -a\\ 0\end{bmatrix} \\\begin{bmatrix} -1& 0\\ 0& 1\end{bmatrix} \begin{bmatrix} a/2\\ \sqrt 3 a/2\end{bmatrix} = \begin{bmatrix} -a/2\\ \sqrt 3 a/2\end{bmatrix}}\\ ,故選\bbox[red, 2pt]{(B)}$$


解答:$$\cases{男女各1人:C^3_1C^4_1=12種組合\\ 男女各2人:C^3_2C^4_2=18種組合\\ 男女各3人:C^3_3C^4_3=4種組合 } \Rightarrow 合計34種組合,故選\bbox[red, 2pt]{(D)}$$

解答:$$y=\sin x在區間[-{\pi\over 2},{\pi\over 2}]遞增\Rightarrow \sin \left[ {\pi\over 3}(x-{3\over 2})\right] 在區間 -{\pi\over 2}\le {\pi\over 3}(x-{3\over 2})\le {\pi\over 2} 遞增\\ \Rightarrow -{3\over 2}\le x-{3\over 2}\le {3\over 2} \Rightarrow 0\le x\le 3,故選\bbox[red, 2pt]{(A)}$$

解答:$$若第1個籃框沒有球的情形:將5個不同球投入2個不同的籃框有2^5種情形,\\需扣除第2個籃框也沒有球或第3個籃框也沒有球的這兩種情形,即2^5-2\\ 因此機率為{C^3_1(2^5-2) \over 3^5} ={3\times 30\over 3\times 81} ={10\over 27},故選\bbox[red, 2pt]{(C)}$$

解答:$$甲、乙兩位警察同時沒命中的機率:(1-{3\over 4})(1-{2\over 3})={1\over 12}\\ \Rightarrow 至少中一槍的機率=1-{1\over 12} ={11\over 12},故選\bbox[red, 2pt]{(D)}$$

解答:$$\cases{f(x)除以x^2+9x+8的餘式為ax+b \Rightarrow f(x)=(x^2+9x+8)p(x)+ax+b \\f(x)除以x+1的餘式為3 \Rightarrow f(-1)=3} \\\Rightarrow f(-1)=-a+b=3\Rightarrow =a-b=-3,故選\bbox[red, 2pt]{(D)}$$

解答:$$f(x)=\sin x+\cos x=\sqrt 2({1\over \sqrt 2}\sin x+{1\over \sqrt 2}\cos x) =\sqrt 2(\cos 45^\circ \sin x+ \sin 45^\circ \cos x) \\=\sqrt 2\sin(x+45^\circ) \Rightarrow f(8^\circ) \gt f(7^\circ) \gt f(6^\circ) \gt f(5^\circ) ,故選\bbox[red, 2pt]{(D)}$$
解答:$$與平均值差異最大的資料,故選\bbox[red, 2pt]{(A)}$$
解答:$$正弦定理:{\overline{BC} \over \sin \angle A} ={\sqrt 2\over 1/\sqrt 2} =2=2R \Rightarrow 外接圓半徑R=1,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{無人機P(0,0,300) \\ A(300\tan 45^\circ,0,0)=(300 ,0,0) \\ B(0,300\tan 60^\circ,0) =(0,300\sqrt 3,0)} \Rightarrow \overline{AB} =600,故選\bbox[red, 2pt]{(D)}$$
解答:$$\log x+\log y=\log (xy)=2 \Rightarrow xy=10^2=100 \Rightarrow {4x+y\over 2}\ge \sqrt{4x\cdot y} \\ \Rightarrow 4x+y \ge 2\sqrt{400}=40,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{\vec u= \overrightarrow{AB} =(1,0,2) \\\vec v= \overrightarrow{AC} =(-1,1,1) } \Rightarrow \triangle ABC={1\over 2} \sqrt{|\vec u|^2|\vec v|^2-(\vec u\cdot \vec v)^2} ={1\over 2}\sqrt{15-1} ={1\over 2}\sqrt{14},故選\bbox[red, 2pt]{(C)}$$
解答:$$a^2+b^2+c^2=9, a,b,c\in \mathbb Z \Rightarrow (a,b,c)=\cases{(1,2,2):排列數3\\ (-1,2,2):排列數3\\ (0,0,3) :排列數3\\ (0,0,-3):排列數3 } \Rightarrow 合計:12,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{A(3,-2,5) \\B(1,-1,3)} \Rightarrow \overline{AB}=3 \Rightarrow P有無限多個,故選\bbox[red, 2pt]{(D)}$$
解答:$$P\in L:{x-2\over 3}={y+1\over -1} ={z-1\over 2} \Rightarrow P(3t+2,-t-1,2t+1), t\in \mathbb R, L方向向量\vec u=(3,-1,2)\\(A) \times: E_1:x-y-2z= (3t+2)-(-t-1)-2(2t+1) =1 \Rightarrow P\in E_1 \Rightarrow L在E上\\(B) \bigcirc: E_2:x+y-z=1法向量\vec n=(1,1,-1) \Rightarrow \vec n\cdot \vec u=0 \Rightarrow E_2 \parallel L \\(C)\times: E_3:3x-y+2z=1法向量\vec n=(3,-1,2) \Rightarrow \vec n=\vec u \Rightarrow E_2\bot L\\ (D)\times: E_4:2x-y+z=1法向量\vec n=(2,-1,1) \Rightarrow \vec n\cdot \vec u=9\ne 0\\,故選\bbox[red, 2pt]{(B)}$$
解答:$$A=A^{-1} \Rightarrow AA=I \Rightarrow \begin{bmatrix}1& 2\\ a& b \end{bmatrix}\begin{bmatrix}1& 2\\ a& b \end{bmatrix}=\begin{bmatrix}1+2a& 2+2b\\ a+ab& 2a+b^2 \end{bmatrix} =\begin{bmatrix}1& 0\\ 0& 1 \end{bmatrix} \\ \Rightarrow \cases{a=0\\ b=-1} \Rightarrow a+b=-1,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{A\to C:\{右,右,上,上\}排列數{4!\over 2!2!}=6\\ C\to D:\{右,右,上\}排列數3\\ D\to B:\{右,上\}排列數2 } \Rightarrow A\to C\to D\to B:6\times 3\times 2=36,故選\bbox[red, 2pt]{(D)}$$
解答:$$3\lt |x+1|\le 10 \Rightarrow \cases{x\ge -1 \Rightarrow 3\lt x+1\le 10 \Rightarrow 2\lt x\le 9\\ x\le -1 \Rightarrow 3\lt -x-1\le 10 \Rightarrow -11\le x\lt -4} \\ \Rightarrow x=3,4,\dots,9, -11,-10,\dots,-5,共14個,故選\bbox[red, 2pt]{(C)}$$
解答:$$假設邊長為1,C為原點,則\cases{A(0, \sqrt 3) \\B(-1/2,\sqrt 3/2) \\C(0,0) \\F(1,\sqrt 3) \\G(1/2,0)} \Rightarrow \cases{\vec a= \overrightarrow{AB}=(-1/2,-\sqrt 3/2) \\ \vec b=\overrightarrow{AF}=(1,0) \\ \overrightarrow{AG}=(1/2,-\sqrt 3)} \\ \Rightarrow ({1\over 2},-\sqrt 3)= s(-{1\over 2},-{\sqrt 3\over 2}) +t(1,0) =(-{1\over 2}s+t,-{\sqrt 3\over 2}s) \Rightarrow \cases{s=2\\ t=3/2} \\ \Rightarrow s+t={7\over 2},故選\bbox[red, 2pt]{(A)}$$
====================== END ==========================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言