Processing math: 85%

網頁

2020年8月25日 星期二

107年台北市國中教甄聯招數學詳解


臺北市 107 學年度市立國民中學正式教師
聯合甄選-數學科題本



解:
(62)×180÷6=120==632π(B)


解:
a3(ay)<y4y<a2y<1a2=1a=3(B)本題試題有疑義,答案修正為A、B、D均給分


解:
f(x)=x3x2+1f(x)=3x22xf(1)=32=1f(1)=1(1,1)y1=x1y=x(C)


解:
x2x1=0x2=x+1x4=(x+1)2=x2+2x+1=3x+2x8=(x4)2=(3x+2)2=9x2+12x+4=9x+9+12x+4=21x+13x8+x+1=21x+13+x+1=22x+14(D)


解:
10x4dx=[15x5]|10=15=0.2(B)



解:
f(x)=x22(1,1)(2,2)(A)(C)(D)(2,2)(B)


解:
x2y+xy2+x+y=63xy(x+y)+x+y=(xy+1)(x+y)=63x+y=636+1=9x2+y2=(x+y)22xy=922×6=8112=69(A)


解:
a22018a+1=0a22017a+2018a2+1=a1+20182018a=a1+1a=a2+1a1=2018aa1=20181=2017(C)


解:

C{A60EB60DCED=CAB=110AED=CEDCEA=11060=50(C)


解:
{¯AB=4f(x)=0α,α+4α+α+4=bax=3b2a=3ba=62α+4=6α=1f(x)=015f(x)=k(x1)(x5)f(1)=a+b+c=0(B)


解:
{l12()122+13=19so15()15+12=8hv22()222+13=24xe5()5+12=3cshxc(B)


解:
N2+7N+4=N4+23N+4N+4=23k;1N20181k8787(C)



解:
4a+125a1a24+a+1+2(1)=a+1+a2(3)a=8P:a2=6(C)



解:
a=201820172017=201800002017+1b=201720182018=201700002018+1c=201720182017=10000+20182017d=201820172018=10000+20172018{a>bc>da>cd>ba>c>d>b(B)



解:

E62+52=61G=F=10261=39D=3952=14(B)


解:


{a2+b2=m2(1)(1a)2+1=m2(2)(1b)2+1=m2(3){(2)(3)(1a)2=(1b)2a=b(3)(1)(2)a2+b2=(1a)2+1b2=22a(4)(3)(4)a2+2a2=0a=31m2=a2+b2=2(31)2=843=34m2=34×(843)=233(A)



解:


¯BG¯CDABCD¯GC=(¯CD¯AB)÷2=(104)÷2=3¯DG=¯CD¯CG=103=7;BDEF¯BF=¯BD¯GF=¯GD=7¯CF=¯GF¯GC=73=4(C)


解:
(B)×:{CAP=12ׯACׯAPsinCAPBAP=12ׯAPׯABsinPABCAPBAP(B)


解:
BC=2AB{COB=120AOB=60;=2rπ=4π75π÷4π=18+34183434270DA(C)


解:
{POR=120POA=45AOR=12045=75(D)


解:
54x906x16x116(x,y)=(2,38),(9,20),(16,2)(B)


解:
{¯AB=c¯AC=bA=18060=120cosA=cos120=b2+c2222bc=12b2+bc+c2=4(b+c)2=bc+4b+c2bc(b+c)24bcbc+44bcbc43ABC=12bcsinA=12bc×32=34bc34×43=33=13(B)


解:


{¯AE=¯ED¯FC=3¯BF{AOE=EOD=a¯FC=3¯BFABO+OBC=DOC+OBC{AOE=EOD=aOFC=3OBF=3bABO=DOC=c;{¯AE=¯BFAEOOBF=h1h2ab=h1h2OADOCBADOOBC=h21h222a4b=h21h22=a2b2b=2a;ACDABC=¯AD¯BC2a+c4b+c=244a+2c=4b+c=8a+cc=4a;ABFOE=21a+b+c=21a+2a+4a=21a=3{b=2a=6c=4a=12ABCD=2a+4b+2c=6+24+24=54(A)


解:
{>00{(2m+1)24(m2)2>0m20{4m3>0m2m>34m2(C)


解:
{A=AACB=ADC=90ACBADC¯AC¯AB=¯AD¯AC2105k=4k21020k2=40k=2¯AD=4k=42(A)


解:
{ABD=DBCABC=30ABD=15;DAB=90ADB=9015=75(D)


解:


ABD102=82+¯BD2¯BD=6;¯OP¯BD¯AP¯AD=¯AO¯AB=12¯AP=12¯AD=4;{CAO=APO=90AOP=AOPCAOAPO¯AC¯AO=¯AP¯PO¯AC5=43¯AC=203(C)


解:
x=1y(1)=02a+b=0(D)


解:
x3=(C33+C43++C93)=9n=3Cn3=9n=3(16n312n2+13n)=(16(45218)12(16×9×10×1914)+13(4512))=210(D)


解:
a3=a2+a1a4=a3+a2=2a2+a1a5=a4+a3=3a2+2a1a6=a5+a4=5a2+3a1a7=a6+a5=8a2+5a1a8=a7+a6=13a2+8a1;a7=1208a2+5a1=120{a1=8a2=10a8=13a2+8a1=130+64=194(B)



解:
320353A50A3×(20353)A=15A:=15A:50A=3:10(A)


解:
x2+1x2=(x+1x)22x3+1x3=(x+1x)(x2+1x21)=(x+1x)((x+1x)23)x+1x=a+a21+1a+a21=a+a21+aa21=2ax3+1x3=(x+1x)((x+1x)23)=(2a)(4a23)=8a36a(A)


解:
a2+2a1+a3+2a2+a4+2a3++a10+2a9=0{a2+2a1=0a3+2a2=0a4+2a3=0a10+2a9=0310n=1ana12a10=010n=1an=13(a1+2a10)a10=2a9=2(2a8)=22a8=22(2a7)=23a7==29a1=210=102410n=1an=13(a1+2a10)=13(22048)=682(D)



解:


C(0,0){A(3,33)B(6,0)D(2,23)E(4,0){N=12(A+E)=(12,323)M=12(B+D)=(2,3){¯CM=7¯CN=7¯MN=7MNCMNC=34(7)2=743(C)



解:
令正方形邊長為m \Rightarrow {\overline{DC} \over \overline{AF}} = {\overline{DE} \over \overline{EA}} \Rightarrow {b-m \over b } ={m \over a} \Rightarrow m={ab\over a+b} ; \\ {無陰影面積\over 陰影面積} ={\triangle EDC + \triangle CBF \over 正方形abcd} ={{1\over 2}m(b-m)+ {1\over 2}m(a-m) \over m^2} ={a+b-2m \over 2m} \\={a+b \over 2m}-1 ={(a+b)^2 \over 2ab}-1 ={a^2+b^2 \over 2ab} ={c^2\over 2ab},故選\bbox[red, 2pt]{(D)}


解:a_2=3a_1-1 \Rightarrow a_3=3a_2-1 =3^2a_1-3-1 \Rightarrow a_4= 3a_3-1 =3^3a_1-3^2-3-1 \\ \Rightarrow a_n =3^{n-1}a_1-3^{n-2}-3^{n-3}-\cdots - 1 =3^{n-1}-3^{n-2}-3^{n-3}-\cdots - 1 \\ =3^{n-1}-(3^{n-2}+3^{n-3}+\cdots + 1) =3^{n-1}-{ 3^{n-1}-1\over 2} ={1\over 2}(3^{n-1}+1),故選\bbox[red, 2pt]{(C)}


解:\cases{F_n是偶數 \Rightarrow n是3的倍數\\ F_n是3的倍數數\Rightarrow n是4的倍數} \Rightarrow n是12的倍數\\ \Rightarrow n=12,24, 36,48,60,72,84,共七個,故選\bbox[red, 2pt]{(B)}


解:


\cases{\overline{RU}=a \\\overline{RU} ={1\over 4}\overline{RS}} \Rightarrow \overline{SU}=3a \Rightarrow \overline {AU} = {1\over 2}\overline{RS} -\overline{RU}=a;\\令\overline{BT}=b,由於A、B、F皆為圓切點\Rightarrow \cases{\overline{UA}= \overline{UF}=a\\ \overline{BT}= \overline{TF}=b} \Rightarrow \overline{TR}=2a-b\\ 直角\triangle TUR \Rightarrow (a+b)^2 = a^2 + (2a-b)^2 \Rightarrow b={2\over 3}a \Rightarrow {\overline{RT} \over \overline{RQ}} ={2a-b \over 4a} = {2a-2a/3 \over 4a}={1\over 3}\\,故選\bbox[red, 2pt]{(A)}


解:

\cases{\cos \angle ADC = {60^2+52^2-\overline{AC}^2 \over 2\times 60\times 52} ={  6304-\overline{AC}^2 \over 6240}\\ \cos \angle ABC = {25^2+ 39^2-\overline{AC}^2 \over 2\times 25\times 39} ={2146- \overline{AC}^2\over 1950}}; \\由於\cos \angle ADC = -\cos \angle ABC \Rightarrow {  6304-\overline{AC}^2 \over 6240}=-{2146- \overline{AC}^2\over 1950} \Rightarrow \overline{AC}^2=3136 \Rightarrow \overline{AC} =56  \\ \Rightarrow \cos \theta= {  6304-\overline{AC}^2 \over 6240}={  6304-3136 \over 6240} ={33\over 65} \Rightarrow \sin \theta ={56\over 65}\\正弦定理: {\overline{AC} \over \sin \theta} =2r = {56\over 56/65} =65 \Rightarrow 周長=2r\pi = 65\pi,故選\bbox[red, 2pt]{(D)}





解:
作直線\overline{AF}交\overline{BC}於G點,見上圖;又\cases{\overline{AD}:\overline{DB} =1:3 \Rightarrow \cases{\overline{AD}=m,\overline{DB}=3m \\ \triangle ADF=a, \triangle BDF=3a} \\\overline{AE}:\overline{ED} =2:1 \Rightarrow \cases{\overline{AE}=2n,\overline{ED}=n \\ \triangle AEF=2b, \triangle CEF=b}};\\ \triangle BCF ={1\over 2}\triangle ABC \Rightarrow \overline{AF}:\overline{FG}=1:1 \Rightarrow \cases{\triangle BFG=\triangle AFB=4a \\ \triangle CFG =\triangle ACF=3b};\\ {\triangle ADE \over \triangle ABC} ={\overline{AD}\times \overline{AE} \over \overline{AB}\times \overline{AC}} \Rightarrow {a+2b \over 8a+6b}={m\times 2n \over 4m\times 3n}={1\over 6} \Rightarrow a=3b \\\Rightarrow {\triangle BDF \over \triangle ABC} ={3a \over 8a+6b}={9b \over 30b}={3\over 10},故選\bbox[red, 2pt]{(B)}

-- END   (僅供參考)  --



沒有留言:

張貼留言