Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

網頁

2020年10月9日 星期五

109年台中文華高中第2次教甄-數學詳解

 臺中市立文華高級中等學校 109 學年度
第2次教師甄選-數學專業知能試題



解:
{f(2x)<011f(2x+5)<016{f(x)<011f(x)<016f(x)<016+11=27


解:
{3α/2=3αlog3β=232β{3α=3αlog3β=3βA(a,3a){y=3xy=3xB(b,3b){y=log3xy=3x;{y=3xy=log3xy=x{a=3b3a=ba+b=3;(α+β)22(3)αlog3β=(3)22(3α)2(3β)=343+2(α+β)=343+23=323


解:
{S={a,b,c,d,e,f}A={a,b}P(A)=#(A)#(S)=26=13ABP(AB)=P(A)P(B)=13P(B)P(AB)P(B)B#(B)0011/61/2{a,,}C42{b,,}C42,{c,d,e,f}2/61S13/63/2104/6,5/6,6/610#(B)=1+C42+C42+1=14






 
解:

¯BE¯ACF,{CAD=ADBACB=7545=30BED=180AEB=180120=60EBD=AEBEDB=12075=45BDE¯EDsinEBD=¯BDsinBED=¯BEsinBDE42sin45=¯BDsin60=¯BEsin75{¯BD=43¯BE=8sin75=8sin(45+30)=2(2+6)FCB=FBC=45¯FB=¯BC÷2=6+432=32+26¯EF=¯FB¯BE=32+262226=2¯AE=2¯EF=22cosAEB=¯AE2+¯BE2¯AB22¯AEׯBEcos120=8+4(2+6)2¯AB282(2+6)12=40+163¯AB216+163¯AB2=48+243¯AB=6+23



解:
2a×b+3c×b+7c×a=(12,4,11)a(2a×b+3c×b+7c×a)=a(12,4,11)03a(b×c)+0=(3,1,5)(12,4,11)=87a(b×c)=29|315b1b2b3c1c2c3|=a(b×c)=29


解:
{x+ay+a2z=2a3x+by+b2z=2b3x+cy+c2z=2c3(4,2,4){42a+4a2=2a342b+4b2=2b332c+4c2=2c3{a32a2+a+2=0b32b2+b+2=0c32c2+c+2=0a,b,cx32x2+x+2=0abc==2


解:
{P(a24,a)A(2,1)B(1,0)M=¯PA+¯PB;P4x=y2F(1,0)=BL:x=1¯PB=d(P,L)M=d(A,L)=3

解:
N:3N(a,b,c)1(1,1,1)12(2,2,2)1(2,1,2)3(2,1,1)33(3,3,3)1(3,12,3)6(3,12,12)124(4,4,4)1(4,13,4)9(4,13,13)275(5,5,5)1(5,14,5)12(5,14,14)48=(1×1+2(1+3+3)+3(1+6+12)+4(1+9+27)+5(1+12+48))÷53=525125=215




解:
z=(22+2i)x22ixy22iy2+32y+(3+4i)a(2+i)b(112+i)=0{Re(z)=0Im(R)=0{22x2+32y+3a2b112=02x22xy22y2+4ab1=0a,bab2{{2x2+3y=113a=2b{x2xy2y2=(x+y)(x2y)=04ab=1{x=2y=1a=2/5b=3/5x+y+a+b=4




解:
nn數量累積和1,31225,72269,11,15331517,19,21,23443125,27,29,31566133,3537,39,41,43669745,4749,51,53,557815357,59,61,6365,67,..,798821781,..,99910307101,..,1191010407121,..,1431112539145,..,1671212683169,..,1951314865197,..,22314141061225,..,25515161301257,..,28716161557289,..,32317181863325,..,33918820073411812025n339




解:
f(1x)=1f(x)f(1)=f(10)=1f(0)=1f(1/3)=f(1)/2=1/2f(1/2)=f(11/2)=1f(1/2)2f(1/2)=1f(1/2)=1/2:{0x1<x21f(x1)f(x2)f(1/2)=f(1/3)=1/2f(x)=12x[1/3,1/2];f(1092020)=f(3272020÷3)=12f(3272020)=12f(9812020÷3)=14f(9812020);13<9812020<12f(9812020)=121092020=14×12=18



解:
an=7(110n+110n+1++1102n1)=710n(1+110++110n1)=79×10n1(1110n)Sn=nk=1ak=nk=179×10k1(1110k)=79nk=1(110k11102k1)=79(1110n11011101102n+11102)=79(1009919×10n1+199×102n1)lim



解:
假設連續n個邊,及剩下的109-n邊,可以分別組合成一個n+1多邊形及一個110-n個多邊形,\\這兩個多邊形的面積和等於原正109邊形面積,也就是10;\\當n=2時,產生1組面積和為10的三角形及108邊形,共有109組,面積總和為1090;\\當n=3時,也有109組,面積總和也是1090;\\ n=54時為最大值,也就是n=2-54,共53種;因此總面積和=1090\times 53= \bbox[red,2pt]{57770}



\cases{k=3\\ n=10}代公式:(k-1)(-1)^n+(k-1)^n = 2+2^{10}= \bbox[red,2pt]{1026}


\alpha,\beta,\gamma為x^3-2kx^2+(k^2+11)x-96=0之三根\Rightarrow \alpha+\beta +\gamma=2k \Rightarrow k={1\over 2}(\alpha+\beta +\gamma) \\ \Rightarrow \triangle面積=\sqrt{k(k-\alpha)(k-\beta)(k-\gamma)} =\sqrt{k(k^3-2k^3+(k^2+11)k-96)} =3\sqrt 3 \\ \Rightarrow k(11k-96)=27 \Rightarrow 11k^2-96k-27=0 \Rightarrow (11k+3)(k-9)=0 \\\Rightarrow k=\bbox[red, 2pt]{9}(k為三邊長之和的一半,必為正值)






球S:x^2+y^2+z^2-2x-4y+8z+18=0 \Rightarrow (x-1)^2+(y-2)^2 +(z+4)^2 =3 \\ \Rightarrow \cases{球心A(1,2,-4)\\ 球半徑R=\sqrt 3} \Rightarrow d(A,E)= {|1+4+8-16|\over \sqrt{1+4+4}} =1 = \overline{AB} (B為圓C之圓心)\\又P為切點\Rightarrow \angle APR=90^\circ = \angle BPR + \angle APB =  \angle BPR+\angle BRP \\ \Rightarrow \angle APB= \angle BPR,再加上\angle ABP=\angle PBR = 90^\circ \Rightarrow \triangle ABP \sim \triangle PBR (AAA) \\ \Rightarrow {\overline {AB} \over \overline{PB}} ={\overline {PB} \over \overline{BR}} \Rightarrow {1\over \sqrt 2} = {\sqrt 2\over \overline{BR}} \Rightarrow \overline{BR} =2 \Rightarrow \overline{AR}=1+2=3;\\ 平面E的法向量(1,2,-2)即為直線\overline{AR}的方向向量\Rightarrow \overline{AR}的方程式: {x-1\over 1} = {y-2\over 2} ={x+4\over -2} \\ \Rightarrow B(t+1,2t+2,-2t-4),B在E上 \Rightarrow t+1+4t+4+4t+8-16=0 \Rightarrow t=1/3 \\ \Rightarrow B(4/3,8/3,-14/3) \Rightarrow \overrightarrow{AB} =(1/3,2/3,-2/3),再由3\overrightarrow{AB}=\overrightarrow{AR} \Rightarrow \bbox[red,2pt]{R(2,4,-6)}

-- END   (解題僅供參考)  --


沒有留言:

張貼留言