國立中央大學附屬中壢高級中學109學年度第 1 次教師甄選數學科筆試題目卷
解:
{直角△ADO:¯OA2=¯OD2+¯AD2直角△OBD:¯OB2=¯OD2+¯BD2⇒{¯AD=1¯BD=5;又D,E,F為切點⇒{¯AF=¯AD=1¯BE=¯BD=5¯CE=¯CF=a⇒△ABC周長=2S=2a+12△ABC面積={△OAB+△OBC+△OAC=√3(a+6)√s(s−¯AB)(s−¯BC)(s−¯AC)=√5a(a+6)⇒√3(a+6)=√5a(a+6)⇒3(a+6)=5a⇒a=9⇒△ABC面積=√3(9+6)=15√3
解:
8∑k=1→PAk=8∑k=1(→PO+→OAk)=8→PO+8∑k=1→OAk=8→PO⇒|8∑k=1→PAk|=|8→PO|=8
解:
P為A逆時鐘旋轉60∘,即P=[1/2−√3/2√3/21/2][51]=[5−√321+5√32]→AC=→OP⇒→AB=3→AC=3(5−√32,1+5√32)=(15−3√32,3+15√32)⇒B=(15−3√32,3+15√32)+(5,1)=(25−3√32,5+15√32)
解:
正立方體⇒↔AC⊥↔HF⇒(−2,2,1)⊥(2,1,a)⇒(−2,2,1)⋅(2,1,a)=−4+2+a=0⇒a=2;↔AC與↔HF的距離即為立方體的邊長,因此令→n=(−2,2,1)×(2,1,2)=(3,6,−6){P(3,−3,−5)在↔AC上Q(0,−2,2)在↔HF上⇒→PQ=(−3,1,7)⇒→PQ在→n上的正射影長=→PQ⋅→n|→n|=|−9+6−42|√9+36+36=459=5⇒正立方體體積=53=125
假設{A(a,0,0)B(0,b,0)C(0,0,c)⇒E:xa+yb+zc=1;又E過P(3,1,2)⇒3a+1b+2c=1由柯西不等式:((√3a)2+(√1b)2+(√2c)2)((√3a)2+(√9b)2+(√2c)2)≥(3+3+2)2⇒(3a+1b+2c)(3a+9b+2c)≥82⇒m=3¯OA+9¯OB+2¯OC=3a+9b+2c≥64⇒m之最小值為64
前5字母A̸中5字母B̸後5字母C̸排列數5B5C5A14B1C4C1A4A1B533B2C3C2A3A2BC53C53C532B3C2C3A2A3BC52C52C521B4C1C4A1A4B535C5A5B1⇒排列數共有1+125+1000+1000+125+1=2252
解:
P,Q,R為切點(見上圖)⇒¯NP=¯NQ=¯NR=a直角△O1SO2:¯O1O22=¯O1S2+¯SO22⇒(9+r2)2=(9−r2)2+(25−9−r2)2⇒r22−68r2+256=0⇒r2=4(64不合)⇒a=(25−9−r2)÷2=6N為切點⇒∠SO1O2+∠PNQ=180∘⇒∠MNC=∠O2O1S⇒¯MN的斜率=tan∠MNC=tan∠O2O1S=2a9−r2=125
解:
解:
‖
\triangle ABC \cong \triangle EDC \Rightarrow \overline{AC} =\overline{EC}=a \Rightarrow \cases{\cos \alpha = {32-a^2\over 32} \\ \cos \beta ={2a^2-1\over 2a^2}} \\ \Rightarrow (1-\cos\alpha)(1-\cos \beta) = {a^2\over 32}\times {1\over 2a^2} =\bbox[red,2pt]{1\over 64}
\cases{f(x)=x^3+2x^2 -3x-1 \\ g(x)=x^4+3x^3-x^2-5x+1} \Rightarrow g(x)=(x+1)f(x)-x+2\\ 又\alpha,\beta,\gamma 為f(x)=0之三根\Rightarrow \cases{\alpha+\beta +\gamma = -2\\ \alpha\beta +\beta\gamma +\gamma\alpha=-3\\ \alpha\beta\gamma = 1}\\ 因此 {1\over g(\alpha)} +{1\over g(\beta)} +{1\over g(\gamma)} ={1\over (\alpha+1)f(\alpha)-\alpha+2} +{1\over (\beta+1)f(\beta)-\beta+2} +{1\over (\gamma+1)f(\gamma)-\gamma+2} \\= {1\over 2-\alpha}+{1\over 2-\beta} +{1\over 2-\gamma} = {(2-\beta)(2-\gamma)+(2-\alpha)(2-\gamma) +(2-\alpha)(2-\beta) \over (2-\alpha)(2-\beta)(2-\gamma)} \\={12-4(\alpha+\beta +\gamma) +(\alpha\beta +\beta\gamma +\gamma\alpha) \over 8-4(\alpha+\beta +\gamma)+2(\alpha\beta +\beta\gamma +\gamma\alpha)-\alpha\beta \gamma} ={12+8-3 \over 8+8-6-1} =\bbox[red,2pt]{17\over 9}
解:
\triangle APC \Rightarrow \cases{\overline{PA} =\overline{PC}=a \\ \overline{AC}=\overline{AB}\times \sqrt 2=4\sqrt 2}\Rightarrow \cos \beta = {2a^2-(4\sqrt 2)^2\over 2a^2} =-{1\over 4} \Rightarrow a={8\over \sqrt 5} \\ \angle BPC=90^\circ \Rightarrow \overline{BC}^2 =\overline{BP}^2+\overline{PC}^2 \Rightarrow 16=\overline{BP}^2 + ({8\over \sqrt 5})^2 \Rightarrow \overline{BP}= {4\over \sqrt 5}\\ 同理,\angle CPE=90^\circ \Rightarrow \overline{EC}^2 =\overline{PE}^2(=(\overline{EC}-\overline{PB})^2)+\overline{PC}^2 \\\Rightarrow \overline{EC}^2 =(\overline{EC}-{4\over \sqrt 5})^2+{8\over \sqrt 5}^2 \Rightarrow \overline{EC}= 2\sqrt 5\\ 直角\triangle EQC: (2\sqrt 5)^2 =2^2 +\overline{EQ}^2 \Rightarrow \overline{EQ}=4 \Rightarrow \cos \alpha={\overline{OQ} \over \overline{EQ}} ={2\over 4}=\bbox[red,2pt]{1\over 2}
令\cases{P(x,3x^2) \\ Q(2\cos y,2\sin y-8)} \Rightarrow \cases{P為拋物線\Gamma_1:y=3x^2上的點\\ Q為圓\Gamma_2: x^2+(y+8)^2=4上的點\\\overline{PQ}^2 =(x-2\cos y)^2+(3x^2+8-2\sin y)^2}\\ 因此\overline{PQ}最短的距離=\Gamma_2圓心至\Gamma_1頂點的距離再減去半徑長=8-2=6 \Rightarrow \overline{PQ}^2 =\bbox[red,2pt]{36}
解:
此題相當於求上圖兩塊著色的面積和,也相當於下圖著色部份的面積 = \overline{AB}\times \overline{BC}\div 2= 2\sqrt 2\times 2\sqrt 2\div 2=\bbox[red,2pt]{4}
解:
解:\cases{f(x)=0有虛根\\ \lim_{x\to 1}{f(x)\over x^3-1}={1\over 3}} \Rightarrow f(1)=0;由於 f(x)=(x^2-2ax+b-2a)(x-1)-2a+b-c \\ \Rightarrow f(1)=-2a+b-c=0 \Rightarrow 2a-b+c=0\cdots(1)\\ 又\lim_{x\to 1}{f(x)\over x^3-1}= \lim_{x\to 1}{ x^2-2ax+b-2a\over x^2+x+1} = {1-2a+b-2a\over 3} ={1\over 3} \Rightarrow b=4a代入(1) \Rightarrow c=2a\\ f(x)=0有虛根\Rightarrow x^2-2ax+b-2a=0 無實根 \Rightarrow 判別式 < 0 \Rightarrow 4a^2-4b+8a< 0 \\ \Rightarrow a^2-b+2a < 0 \Rightarrow a^2-4a+2a < 0 \Rightarrow a(a-2) < 0 \Rightarrow 0 < a < 2 \Rightarrow a=1 \\\Rightarrow \cases{b=4a=4\\ c=2a=2} \Rightarrow a+b+c = 1+4+2 = \bbox[red,2pt]{7}

解:\cases{a^b=b^a \\ a=89b} \Rightarrow \cases{ b\log a=a\log b \\ \log a = \log 89 +\log b}\\ \log_{89}(ab) = {\log ab \over \log 89} ={\log a+\log b \over \log a-\log b} = {\log a+{b\over a}\log a \over \log a-{b\over a}\log a} ={1+b/a \over 1-b/a} ={a+b\over a-b} ={89b+b\over 89b-b} ={90\over 88} \\= \bbox[red,2pt]{45\over 44}
解:S=\sum_{n=1}^\infty {n(n+1)\over 2^n} = {2\over 2}+{6\over 2^2} +{12\over 2^3} +{20\over 2^4}+\cdots+{(n-1)n\over 2^{n-1}} +{n(n+1)\over 2^n} +\cdots \\ \Rightarrow {1\over 2}S={2\over 2^2}+{6\over 2^3} +{12\over 2^4} +{20\over 2^5}+\cdots+{(n-1)n\over 2^{n}} +{n(n+1)\over 2^{n+1}} +\cdots \\ \Rightarrow S-{1\over 2}S ={2\over 2}+{4\over 2^2} +{6\over 2^3} +{8\over 2^4 }+\cdots +{2n\over 2^n}+\cdots \\ \Rightarrow {S\over 2}= 2\left( {1\over 2}+{2\over 2^2} +{3\over 2^3} +{4\over 2^4 }+\cdots +{n\over 2^n}+\cdots\right)=2\times {1\over 1-1/2}=4\\ \Rightarrow S=\bbox[red,2pt]{8}

解:單位圓上兩點z_1,z_2,且\overline{z_1z_2}={\sqrt 6-\sqrt 2\over 2},則\cos \angle z_1Oz_2={1+1-({\sqrt 6-\sqrt 2\over 2})^2 \over 2} ={\sqrt 3\over 2} \\\Rightarrow \angle z_1Oz_2=30^\circ \Rightarrow |z_1-z_2| < {\sqrt 6-\sqrt 2\over 2} \Rightarrow \angle z_1Oz_2 < 30^\circ;\\現在正2020邊形z_1z_2...z_{2020},每一內角為{360^\circ \over 2020} \Rightarrow {360^\circ \over 2020}\times n < 30^\circ \Rightarrow n\le 168\\ \Rightarrow z_i的左邊有168個z_j(i\ne j),右邊也有168個z_j(i\ne j),使得|z_i-z_j|< {\sqrt 6-\sqrt 2\over 2}\\也就是說對任一z_i而言,在其它2019個z_j(i\ne j)有168\times 2=336個符合條件\\,其機率為{336\over 2019} =\bbox[red,2pt]{112\over 673}

解:

解:
S_n={3\over 2!}- {4\over 3!}+ {5\over 4!}-{6\over 5!}+ \cdots +(-1)^n\cdot {n+2 \over (n+1)!} \\ =({2\over 2!}+{1\over 2!})- ( {3\over 3!}+ {1\over 3!})+ ({4\over 4!} +{1\over 4!})-({5\over 5!}+{1\over 5!}) \cdots +(-1)^n\cdot ({n+1 \over (n+1)!} +{1 \over (n+1)!}) \\ =(1+{1\over 2!})- ( {1\over 2!}+ {1\over 3!})+ ({1\over 3!} +{1\over 4!})-({1\over 4!}+{1\over 5!}) \cdots +(-1)^n\cdot ({1 \over n!} +{1 \over (n+1)!}) \\ =1+(-1)^n\cdot {1\over (n+1)!} \\ \Rightarrow \lim_{n\to \infty} S_n = \bbox[red,2pt]{1}

解:
三圖形\cases{\Gamma_1: {x^2\over 4}+y^2=1 \\ \Gamma_2: y+1=({\sqrt 3\over 2}+1)x\\ \Gamma_3:y+1=-({\sqrt 3\over 2}+1)x}的交點\cases{A(-1,{\sqrt 3\over 2})\\ B(1,{\sqrt 3\over 2})\\ C(0,1)},見上圖;\\著色面積=2\int_0^1 \sqrt{1-{x^2\over 4}}-(({\sqrt 3\over 2}+1)x -1)\;dx \\ =2\left. \left[ {1\over 4}\sqrt{4-x^2}\cdot x+\sin^{-1}{x\over 2}-(({\sqrt 3\over 4}+{1\over 2})x^2-x)\right] \right|_0^1 =2({1\over 4}\sqrt 3+{\pi \over 6}-{2+\sqrt 3\over 4}+1) \\ =2({\pi \over 6}+{1\over 2}) = \bbox[red,2pt]{{\pi \over 3}+1}
-- END (解題僅供參考) --
題目都是一個禁止標記
回覆刪除要如何讓它顯現出來?
謝謝你的提醒,應該是設定跑掉了,目前這試題已修訂完畢,若還有問題,請再告知!!
刪除作者已經移除這則留言。
刪除請問第18題是不是加上cos比較好呢
回覆刪除另外根號3/2 角不是應該為30度嗎
再請告知 感謝你
已修訂完畢,謝謝提醒!!
刪除謝謝你!!
回覆刪除請問20題倒數第2行的積分是怎麼積的呢?謝謝
回覆刪除令x=sin(u), dx=cos(u)du 代回原式就能求sqrt(1-x^2)的積分了.....
刪除