109年特種考試地方政府公務人員考試試題
等 別:三等考試類 科:電力工程、電子工程
科 目:工程數學
甲、申論題部分:(50%)
解:
(一)eiz=cosz+isinz⇒cosz=12(eiz+e−iz)令ω=eiz,則cosz=√2⇒12(ω+1ω)=√2⇒ω2−2√2ω+1=0⇒ω=√2±1⇒eiz=√2±1⇒iz=ln(√2±1)⇒z=−iln(√2±1)⇒z=−iln(√2±1)+2nπ,n∈Z(二)f(z)=z3+z2+4z4+4z2=z3+z2+4z2(z+2i)(z−2i)⇒{z=0,±2i皆在圓內z=0為二階極點z=±2i皆為一階極點⇒{Res(f,0)=ddz(z2f(z))|z=0=ddz(z3+z2+4z2+4)|z=0=3z2+2zz2+4−2z(z3+z2+4)(z2+4)2|z=0=14Res(f,2i)=(z−2i)f(z)|z=2i=z3+z2+4z2(z+2i)|z=2i=12Res(f,−2i)=(z+2i)f(z)|z=−2i=z3+z2+4z2(z−2i)|z=−2i=12⇒∮Cf(z)dz=2πi(Res(f,0)+Res(f,2i)+Res(f,−2i))=2πi×54=52πi
解:
解:(一)y′(t)+5y(t)=5x(t)=3e−2tu(t)⇒L{y′}+5L{y}=3L{e−2tu(t)}⇒sY(s)−y(0)+5Y(s)=3s+2⇒Y(s)=1s+2−3s+3⇒L−1{Y(s)}=L−1{1s+2}−3L−1{1s+3}⇒y(t)=e−2t−3e−3t(二)initial value x(0)=lims→∞sX(s)=lims→∞e−2s2s2+1(s+2)2=0final value x(∞)=lims→0sX(s)=lims→0e−2s2s2+1(s+2)2=14⇒{x(t)的初值為0x(t)的終值為1/4
解:
(一)(a)Ax=b,定義A′=(A|b)=(12313321462610361111k)−r4+r1,−3r4+r2,−2r4+r3→(01203−k0−1−216−3k04816−2k1111k)r1+r2,−4r1+r3→(01203−k00019−4k0001−6+2k1111k)⇒9−4k=−6+2k⇒k=52(一)(b)
由(a)可知 rank(A)≠4⇒det(A)=0
(二){dx1dt=2x1−2x2+3x3dx2dt=x1+x2+x3dx3dt=x1+3x2−x3⇒[x′1x′2x′3]=[2−2311113−1][x1x2x3]令A=[2−2311113−1],det(A−λI)=0⇒|2−λ−2311−λ113−1−λ|=0⇒−(λ−1)(λ+2)(λ−3)=0⇒λ=1,−2,3λ=1⇒特徵向量u1=[−111],λ=−2⇒特徵向量u2=[111−14],λ=3⇒特徵向量u3=[111]⇒[x1x2x3]=C1[−111]ex+C2[111−14]e−2x+C3[111]e3x將初始值{x1(0)=1x2(0)=0x3(0)=1/2帶入上式⇒{1=−C1+11C2+C30=C1+C2+C31/2=C1−14C2+C3⇒{C1=−2/3C2=−1/30C3=7/10⇒{x1=23ex−1130e−2x+710e3xx2=−23ex−130e−2x+710e3xx3=−23ex+1430e−2x+710e3x
乙、測驗題部分:(50%)
解:det(A−λI)=0⇒|1−λ020−λ0204−λ|=0⇒−λ(λ−4)(λ−1)+4λ=0⇒−λ(λ2−5λ+4−4)=0⇒−λ2(λ−5)=0⇒λ=0,0,5⇒D=(λ1000λ2000λ3)=(000000005)⇒故選(A)
解:{det(A)=6det(B)=2⇒det(AB−1)=det(A)⋅det(B−1)=det(A)det(B)=62=3,故選(C)
解:(A)◯:∇⋅r=(∂∂xi+∂∂yj+∂∂zk)⋅(xi+yj+zk)=∂∂xx+∂∂yy+∂∂zz=1+1+1=3(B)◯:{r=(xi+yj+zk)a=(c1i+c2j+c3k)⇒a×r=((c2z−c3y)i+(c3x−c1z)j+(c1y−c2x)k)⇒∇⋅(a×r)=∂∂x(c2z−c3y)+∂∂y(c3x−c1z)+∂∂z(c1y−c2x)=0+0+0=0(C)◯:∇×r=((∂∂yz−∂∂zy)i,(∂∂zx−∂∂xz)j,(∂∂xy−∂∂yx)k)=0(D)×:∇×(a×r)=∇×((c2z−c3y)i+(c3x−c1z)j+(c1y−c2x)k)=(c1−c1)i+(c2−c2)j+(c3−c3)k=0≠a故選(D)
解:∫(2,4)(1,1)2xydx+x2dy=[x2y]|(2,4)(1,1)=16−1=15,故選(B)
解:A=(100−1)⇒At=(t00−t)⇒eAt=(et00e−t),故選(C)
解:
解:令{M(x,y)=x+yN(x,y)=xln(x)(A)×:{∂∂yxM=∂∂y(x2+xy)=x∂∂xxN=∂∂x(x2ln(x))=2xln(x)+x⇒∂∂yxM≠∂∂xxN(B)×:{∂∂y3M=∂∂y(3x+3y)=3∂∂x3N=∂∂x(3xln(x))=3ln(x)+3⇒∂∂y3M≠∂∂x3N(C)◯:{∂∂y1xM=∂∂y(1+yx)=1x∂∂x1xN=∂∂xln(x)=1x⇒∂∂y1xM=∂∂x1xN(D)×:{∂∂y1x2M=∂∂y(1x+yx2)=1x2∂∂x1x2N=∂∂xln(x)x=−ln(x)x2+1x2⇒∂∂y1x2M≠∂∂x1x2N,故選(C)
解:y″
解:f(x)=x^3 \Rightarrow f(x)為奇函數\Rightarrow a_0=0,a_n=0,故選\bbox[red,2pt]{(A)}
解:y=c_1e^x +c_2e^{-2x}+c_3xe^{-2x} \Rightarrow 1, -2,-2為\lambda^2 +a\lambda^2 +b\lambda+c=0之三根為\\ \Rightarrow \cases{a=-(1-2-2) =3\\ b=1\cdot(-2)+ (-2)\cdot (-2)+ (-2)\cdot 1=0\\ c=-1\cdot (-2)\cdot (-2)=-4} \Rightarrow a+b+c=-1,故選\bbox[red,2pt]{(D)}
解:f(t)=\cos t +\int_0^t e^{-\tau}f(t-\tau)\;d\tau \Rightarrow L\{f(t)\} = L\{\cos t\} +L\{\int_0^t e^{-\tau}f(t-\tau)\;d\tau\} \\ \Rightarrow F(s)={s\over s^2+1} +{F(s)\over s+1} \Rightarrow F(s)={s+1\over s^2+1} ={s\over s^2+1} +{1\over s^2+1} \\ \Rightarrow L^{-1}\{F(s)\}= L^{-1}\{{s\over s^2+1}\}+L^{-1}\{{1\over s^2+1}\} \Rightarrow f(t) =\cos t+\sin t,故選\bbox[red,2pt]{(D)}
解:f為機率密度函數\Rightarrow \int_{-\infty}^\infty f(x)\;dx=1 \Rightarrow \int_{0}^1 kx^2\;dx =1 \Rightarrow \left. \left[ {1\over 3}kx^3 \right] \right|_{0}^1=1 \Rightarrow {1\over 3}k=1 \Rightarrow k=3\\ \Rightarrow \cases{EX = \int_0^1 xf(x)\;dx =\int_0^1 3x^3\;dx = {3\over 4}\\ EX^2 =\int_0^1 x^2f(x)\;dx = \int_0^13x^4\;dx = {3\over 5}} \Rightarrow \sigma^2 = EX^2-(EX)^2 = {3\over 5} -{9\over 16}= {3\over 80}\\,故選\bbox[red,2pt]{(D)}
解: \iint fdxdy=1 \Rightarrow \int_0^1 \int_0^1 kxy \;dxdy =1 \Rightarrow \int_0^1 {1\over 2}ky\;dy =1 \Rightarrow {1\over 4}k = 1 \Rightarrow k=4;\\ 因此P(X>0.25,Y>0.5) = \int_{0.25}^1 \int_{0.5}^1 4xy\;dydx =\int_{0.25}^1 {3\over 2}x\;dx = {45 \over 64},故選\bbox[red, 2pt]{(C)}
解:z_0=\pi不在圓周|z|=3內,而z_0=\pi/2則在圓周|z|=3內,\\因此\oint_C\left({\cosh z\over (z-\pi)^3} -{\sin^2 z\over (2z-\pi)^3} \right)dz =\oint_C\left( -{\sin^2 z\over (2z-\pi)^3} \right)dz =\oint_C\left( -{\sin^2 z\over 8(z-\pi/2)^3} \right)dz \\=\oint_C {f(z)\over (z-\pi/2)^3} dz , 其中f(z)=-{1\over 8}\sin^2 z \Rightarrow f'(z)=-{1\over 4}\sin z\cos z =-{1\over 8} \sin (2z) \\\Rightarrow f''(z)= -{1\over 4}\cos (2z) \Rightarrow f''(\pi/2)=-{1\over 4}\cos \pi={1\over 4} \\\Rightarrow \oint_C {f(z)\over (z-\pi/2)^3} dz =(2\pi i)\times {1\over 2!}\times f''(\pi/2) = {\pi i\over 4},故選\bbox[red, 2pt]{(A)}
解:{z\over (z+1)(z^2+1)}={z\over (z+1)(z+i)(z-i)} ={f(z)\over z-i} ={g(z)\over z+i},其中\cases{f(z)={z\over (z+1)(z+i) }\\ g(z)={z\over (z+1) (z-i)}}\\ -1不再橢圓內,而\pm i在橢圓內,因此\oint_C{z\over (z+1)(z^2+1)}\;dz = 2\pi i(f(i)+g(-i)) \\=2\pi i({i\over (1+i)(2i)} +{-i\over (1-i)(-2i)}) =2\pi i({1-i\over 4} +{1+i\over 4}) =\pi i,故選\bbox[red, 2pt]{(C)}
解:z_0={1+i\over \sqrt 2} =\cos {\pi \over 4}+i\sin {\pi \over 4} =e^{i{\pi\over 4}} \Rightarrow \cases{z_0^2 =i\\z_0^4=-1\\ z_0^8=1} \\ \Rightarrow f(z_0) =z_0^{24}- 3z_0^{20}+4z_0^{12}-5z_0^6 =(z_0^{8})^3- 3(z_0^{4})^5+4(z_0^{4})^3-5z_0^4\cdot z_0^2\\ = 1+3-4+5i=5i,故選\bbox[red, 2pt]{(A)}
解:\oint_\Gamma {\cos (z)\over z}\;dz = \oint_\Gamma {f(z)\over z}\;dz = 2\pi i\times f(0)=2\pi i\times 1 =2\pi i,故選\bbox[red, 2pt]{(D)}
解:封閉路徑之線積分為0,故選\bbox[red, 2pt]{(C)}
解:\cases{x=t^2\\ y=-t \\ z=t^2} \Rightarrow \cases{dx=2tdt\\ dy=-dt \\ dz=2tdt} \Rightarrow \int_C x^2dx-yzdy +e^zdz =\int_0^1 t^4(2tdt)-(-t^3)(-dt)+e^{t^2}(2tdt)\\ =\int_0^1 2t^5-t^3+2te^{t^2}\;dt = \left. \left[ {1\over 3}t^6-{1\over 4}t^4+e^{t^2}\right] \right|_0^1 =({1\over 12}+e)-1=e-{11\over 12},故選\bbox[red, 2pt]{(C)}
解:det(A−λI)=0⇒|1−λ020−λ0204−λ|=0⇒−λ(λ−4)(λ−1)+4λ=0⇒−λ(λ2−5λ+4−4)=0⇒−λ2(λ−5)=0⇒λ=0,0,5⇒D=(λ1000λ2000λ3)=(000000005)⇒故選(A)
解:{det(A)=6det(B)=2⇒det(AB−1)=det(A)⋅det(B−1)=det(A)det(B)=62=3,故選(C)
解:(A)◯:∇⋅r=(∂∂xi+∂∂yj+∂∂zk)⋅(xi+yj+zk)=∂∂xx+∂∂yy+∂∂zz=1+1+1=3(B)◯:{r=(xi+yj+zk)a=(c1i+c2j+c3k)⇒a×r=((c2z−c3y)i+(c3x−c1z)j+(c1y−c2x)k)⇒∇⋅(a×r)=∂∂x(c2z−c3y)+∂∂y(c3x−c1z)+∂∂z(c1y−c2x)=0+0+0=0(C)◯:∇×r=((∂∂yz−∂∂zy)i,(∂∂zx−∂∂xz)j,(∂∂xy−∂∂yx)k)=0(D)×:∇×(a×r)=∇×((c2z−c3y)i+(c3x−c1z)j+(c1y−c2x)k)=(c1−c1)i+(c2−c2)j+(c3−c3)k=0≠a故選(D)
解:∫(2,4)(1,1)2xydx+x2dy=[x2y]|(2,4)(1,1)=16−1=15,故選(B)
解:A=(100−1)⇒At=(t00−t)⇒eAt=(et00e−t),故選(C)
解:
只有(B)的rank是2,其它都是1,故選(B)
解:令{M(x,y)=x+yN(x,y)=xln(x)(A)×:{∂∂yxM=∂∂y(x2+xy)=x∂∂xxN=∂∂x(x2ln(x))=2xln(x)+x⇒∂∂yxM≠∂∂xxN(B)×:{∂∂y3M=∂∂y(3x+3y)=3∂∂x3N=∂∂x(3xln(x))=3ln(x)+3⇒∂∂y3M≠∂∂x3N(C)◯:{∂∂y1xM=∂∂y(1+yx)=1x∂∂x1xN=∂∂xln(x)=1x⇒∂∂y1xM=∂∂x1xN(D)×:{∂∂y1x2M=∂∂y(1x+yx2)=1x2∂∂x1x2N=∂∂xln(x)x=−ln(x)x2+1x2⇒∂∂y1x2M≠∂∂x1x2N,故選(C)
解:y″
解:f(x)=x^3 \Rightarrow f(x)為奇函數\Rightarrow a_0=0,a_n=0,故選\bbox[red,2pt]{(A)}
解:y=c_1e^x +c_2e^{-2x}+c_3xe^{-2x} \Rightarrow 1, -2,-2為\lambda^2 +a\lambda^2 +b\lambda+c=0之三根為\\ \Rightarrow \cases{a=-(1-2-2) =3\\ b=1\cdot(-2)+ (-2)\cdot (-2)+ (-2)\cdot 1=0\\ c=-1\cdot (-2)\cdot (-2)=-4} \Rightarrow a+b+c=-1,故選\bbox[red,2pt]{(D)}
解:f(t)=\cos t +\int_0^t e^{-\tau}f(t-\tau)\;d\tau \Rightarrow L\{f(t)\} = L\{\cos t\} +L\{\int_0^t e^{-\tau}f(t-\tau)\;d\tau\} \\ \Rightarrow F(s)={s\over s^2+1} +{F(s)\over s+1} \Rightarrow F(s)={s+1\over s^2+1} ={s\over s^2+1} +{1\over s^2+1} \\ \Rightarrow L^{-1}\{F(s)\}= L^{-1}\{{s\over s^2+1}\}+L^{-1}\{{1\over s^2+1}\} \Rightarrow f(t) =\cos t+\sin t,故選\bbox[red,2pt]{(D)}
解:f為機率密度函數\Rightarrow \int_{-\infty}^\infty f(x)\;dx=1 \Rightarrow \int_{0}^1 kx^2\;dx =1 \Rightarrow \left. \left[ {1\over 3}kx^3 \right] \right|_{0}^1=1 \Rightarrow {1\over 3}k=1 \Rightarrow k=3\\ \Rightarrow \cases{EX = \int_0^1 xf(x)\;dx =\int_0^1 3x^3\;dx = {3\over 4}\\ EX^2 =\int_0^1 x^2f(x)\;dx = \int_0^13x^4\;dx = {3\over 5}} \Rightarrow \sigma^2 = EX^2-(EX)^2 = {3\over 5} -{9\over 16}= {3\over 80}\\,故選\bbox[red,2pt]{(D)}
解: \iint fdxdy=1 \Rightarrow \int_0^1 \int_0^1 kxy \;dxdy =1 \Rightarrow \int_0^1 {1\over 2}ky\;dy =1 \Rightarrow {1\over 4}k = 1 \Rightarrow k=4;\\ 因此P(X>0.25,Y>0.5) = \int_{0.25}^1 \int_{0.5}^1 4xy\;dydx =\int_{0.25}^1 {3\over 2}x\;dx = {45 \over 64},故選\bbox[red, 2pt]{(C)}
解:z_0=\pi不在圓周|z|=3內,而z_0=\pi/2則在圓周|z|=3內,\\因此\oint_C\left({\cosh z\over (z-\pi)^3} -{\sin^2 z\over (2z-\pi)^3} \right)dz =\oint_C\left( -{\sin^2 z\over (2z-\pi)^3} \right)dz =\oint_C\left( -{\sin^2 z\over 8(z-\pi/2)^3} \right)dz \\=\oint_C {f(z)\over (z-\pi/2)^3} dz , 其中f(z)=-{1\over 8}\sin^2 z \Rightarrow f'(z)=-{1\over 4}\sin z\cos z =-{1\over 8} \sin (2z) \\\Rightarrow f''(z)= -{1\over 4}\cos (2z) \Rightarrow f''(\pi/2)=-{1\over 4}\cos \pi={1\over 4} \\\Rightarrow \oint_C {f(z)\over (z-\pi/2)^3} dz =(2\pi i)\times {1\over 2!}\times f''(\pi/2) = {\pi i\over 4},故選\bbox[red, 2pt]{(A)}
解:{z\over (z+1)(z^2+1)}={z\over (z+1)(z+i)(z-i)} ={f(z)\over z-i} ={g(z)\over z+i},其中\cases{f(z)={z\over (z+1)(z+i) }\\ g(z)={z\over (z+1) (z-i)}}\\ -1不再橢圓內,而\pm i在橢圓內,因此\oint_C{z\over (z+1)(z^2+1)}\;dz = 2\pi i(f(i)+g(-i)) \\=2\pi i({i\over (1+i)(2i)} +{-i\over (1-i)(-2i)}) =2\pi i({1-i\over 4} +{1+i\over 4}) =\pi i,故選\bbox[red, 2pt]{(C)}
解:z_0={1+i\over \sqrt 2} =\cos {\pi \over 4}+i\sin {\pi \over 4} =e^{i{\pi\over 4}} \Rightarrow \cases{z_0^2 =i\\z_0^4=-1\\ z_0^8=1} \\ \Rightarrow f(z_0) =z_0^{24}- 3z_0^{20}+4z_0^{12}-5z_0^6 =(z_0^{8})^3- 3(z_0^{4})^5+4(z_0^{4})^3-5z_0^4\cdot z_0^2\\ = 1+3-4+5i=5i,故選\bbox[red, 2pt]{(A)}
解:\oint_\Gamma {\cos (z)\over z}\;dz = \oint_\Gamma {f(z)\over z}\;dz = 2\pi i\times f(0)=2\pi i\times 1 =2\pi i,故選\bbox[red, 2pt]{(D)}
解:封閉路徑之線積分為0,故選\bbox[red, 2pt]{(C)}
解:\cases{p_X(1)=0+1/4=1/4\\ p_X(0)=1/4+1/4=1/2\\ p_X(-1)=1/4+0 =1/4} \Rightarrow E(X)=1\cdot{1\over 4} +0\cdot {1\over 2} +(-1)\cdot {1\over 4}=0\\ \cases{p_Y(1)=0+1/4 +1/4=1/2\\ P_Y(-1)=1/4+1/4+0 =1/2} \Rightarrow E(Y)=1\cdot {1\over 2}-1\cdot {1\over 2}=0\\ E(XY) = \sum xyp(x,y) \\= 1\cdot 1\cdot p(1,1)+ 1\cdot (-1)\cdot p(1,-1)+ (-1)\cdot 1\cdot p(-1,1)+ (-1)\cdot (-1)\cdot p(-1,-1) \\=0 -1/4-1/4+0 = -1/2\\ 因此 COV(X,Y)= E(XY)-EXEY =-1/2-0=-1/2,故選\bbox[red, 2pt]{(B)}
=====================================================
申請論未公布答案,解題僅供參考
作者已經移除這則留言。
回覆刪除有過程可以分享嗎? 謝謝!
刪除不好意思,請問第二題的第二小題是否寫錯了?
回覆刪除