網頁

2021年3月26日 星期五

110年身障生升大學-數學甲詳解

110 學年度身心障礙學生升學大專校院甄試

甄試類(群)組別:大學組數學甲

解答$$P((正,反))+P((反,正))= {2\over 3}\times {1\over 3} +{1\over 3}\times {2\over 3} ={4\over 9},故選\bbox[red,2pt]{(A)}$$

解答
$$依題意f(x)=0無實根,其複數根為2+\sqrt 3\pm \alpha i,\alpha \in \mathbb{R} \\\Rightarrow 兩根之和={b\over a}=2(2+\sqrt 3)=4+2\sqrt 3,故選\bbox[red,2pt]{(D)}$$
解答
$$\overline{AD}=4 \Rightarrow \overline{AC} =\overline{AD}\cos 30^\circ = 4\times {\sqrt 3\over 2} =2\sqrt 3\Rightarrow \overline{BC}=\overline{AC}\tan 60^\circ =2\sqrt 3\times \sqrt 3=6\\ \Rightarrow \triangle ABC ={1\over 2}\overline{AC}\times \overline{BC}={1\over 2}\times 2\sqrt 3\times 6=6\sqrt 3,故選\bbox[red,2pt]{(B)}$$
解答$$\cases{\vec a=(3,4)\\ \vec b=(8,-6)\\ \vec c=(a,b)}且\cases{\vec c\cdot \vec a=20\\ \vec c \cdot \vec b=30} \Rightarrow \cases{3a+4b=20\\ 8a-6b=30} \Rightarrow \cases{a=24/5\\ b=7/5} \Rightarrow |\vec c| = \sqrt{a^2+b^2} =5\\,故選\bbox[red,2pt]{(B)}$$
解答$$\triangle ABC面積={1\over 2}\sqrt{(-2)^2+4^2+4^2}=3,故選\bbox[red,2pt]{(A)}$$
解答$$|x|+|x-2|+|x-4|+|x-6|=10 \Rightarrow \begin{cases}12-4x=10 \Rightarrow x=1/2矛盾 & \text{if }x\lt 0 \\12-2x=10 \Rightarrow x=1 & \text{if }0\le x\lt 2\\8=10矛盾 & \text{if }2\le x\lt 4\\2x=10 \Rightarrow x=5 & \text{if }4\le x\lt 6\\ 4x-12=10 \Rightarrow x=11/5矛盾& \text{if }6\le x  \end{cases}\\ \Rightarrow x=1,5 \Rightarrow 1+5=6,故選\bbox[red,2pt]{(A)}$$
解答$$第一次甲獲勝有三種情形(甲,乙)=(剪刀,布)、(石頭、剪刀)、(布、石頭),\\每種的第二次皆有四種情形,其中二種是甲獲勝的;\\ 也就是說第二次獲勝的機率為1/2;只要第二次甲獲勝,第三次就一定也獲勝;\\\begin{array}{} 第1次&第2次 & 第3次\\\hline (剪刀,布) & (石頭,剪刀) & \quad(布,石頭) \\ & (石頭,石頭) &\quad甲輸 \\ & (布,剪刀)&\quad甲輸\\ &(布,石頭) &\quad (石頭,剪刀)\\\hdashline (石頭、剪刀)&\quad (剪刀,布) &\quad (布, 石頭)\\ & (剪刀,石頭) &\quad甲輸\\ & (布,布) &\quad甲輸\\ &(布,石頭) & (剪刀,布)\\\hdashline (布,石頭) & (石頭,剪刀) &\quad (剪刀,布)\\ & (石頭,布)&\quad甲輸\\ & (剪刀,剪刀) &\quad甲輸\\ & (剪刀,布) & \quad(石頭,剪刀)\\\hline\end{array}\\所以整體而言,在第一次甲勝的情況下,連勝三次的機率為1/2,故選\bbox[red,2pt]{(C)}$$
解答$$0\le a\le |x-b| \le c \Rightarrow \begin{cases} a\le x-b \le c \Rightarrow a+b \le x\le b+c & \text{if } x\ge b \\ a\le b-x \le c \Rightarrow b-c\le x\le b-a & \text{if }x \lt b\end{cases} \\ \Rightarrow \cases{a+b=3\\ b+c=d\\ b-c=0 \\ b-a=1} \Rightarrow \cases{a=1\\ b=2\\ c=2} \Rightarrow d=b+c=4,故選\bbox[red,2pt]{(B)}$$
解答$$A=\begin{bmatrix} \sin 1 & 2^{11}\\ \log 97 & \sqrt{15}\end{bmatrix} =\begin{bmatrix} a & b\\ c & d\end{bmatrix} \\(A) \begin{bmatrix} 0 & 1\\ 1 & 0\end{bmatrix} A=\begin{bmatrix} c & d\\ a & b\end{bmatrix} \\(B) \begin{bmatrix} 1 & 1\\ 1 & 1\end{bmatrix} A=\begin{bmatrix} a+c & b+d\\ a+c & b+d\end{bmatrix} \\(C)\begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix} A=\begin{bmatrix} a+2c & b+2d\\ c & d\end{bmatrix}\\ (D)\begin{bmatrix} 2 & 1\\ 1 & 0\end{bmatrix} A=\begin{bmatrix} 2a+c & 2b+d\\ a & b\end{bmatrix}\\ 選項(C)相當於A作列運算,其行列式值不變,故選\bbox[red,2pt]{(C)}$$
解答$$令\cases{A(0)\\ B(b)\\ C(c)},則\overrightarrow{AB}+ 2\overrightarrow{BC} +4\overrightarrow{CA} =b+2(c-b)-4c=0 \Rightarrow -b=2c=2 \\ \Rightarrow |\overrightarrow{AB}| =|b|=2,故選\bbox[red,2pt]{(B)}$$註:由於\(bc \lt 0\)可知: B,C在A的兩側.
解答$$\sin A=2a\sin B \Rightarrow {1\over 2\sin B} ={a\over \sin A},又正弦定理{a\over \sin A} =2R= 2;\\因此{1\over 2\sin B} =2 \Rightarrow \sin B={1\over 4},故選\bbox[red,2pt]{(A)}$$
解答$$\begin{vmatrix}1 & -2 & 1\\ 1 & 2 & -3 \\ 1 & a & b\end{vmatrix} =0 \Rightarrow 4a+4b+4=0 \Rightarrow a+b=-1,故選\bbox[red,2pt]{(A)}$$
解答$$依題意a\in \{0,\pm 1,\pm 2\},b\in \{0,1,2\},及a^b=1 \Rightarrow (a,b)=(-1,2),(\pm 1,0),(\pm 2,0),(1,1),(1,2)\\ 因此共有7組解,故選\bbox[red,2pt]{(D)}$$
解答$$\cases{3f(x)+ 2g(x) = (x^2+x+1)p(x)+3x-4 \cdots(1)\\ f(x)+g(x) =(x^2+x+1)q(x)+x-2\cdots(2)}\\ \Rightarrow \cases{(1)-2\times (2) \Rightarrow f(x)=(x^2+x+1)r(x)+ x\\ 3\times (2)-(1)\Rightarrow g(x)=(x^2+x+1)s(x)-2}\\ \Rightarrow f(x)-g(x)=(x^2+x+1)(r(x)-s(s))+x+2 \Rightarrow 餘式為x+2,故選\bbox[red,2pt]{(C)}$$
解答$$\cases{b=3^{\log_2 5} \\ c=5^{\log_2 3}} \Rightarrow \cases{\log_2 b=\log_2 3^{\log_2 5} =\log_2 5\times \log_2 3\\ \log_2 c=\log_25^{\log_2 3} =\log_23\times \log_2 5 } \Rightarrow b=c;\\又\log_2 5 \gt \log_3 5 \Rightarrow 3^{\log_2 5} \gt 2^{\log_3 5} \Rightarrow b \gt a;\\ 因此b=c \gt a,故選\bbox[red,2pt]{(D)}$$
解答$$3\cos 2x-4\sin 2x=0 \Rightarrow 5({3\over 5}\cos 2x-{4\over 5}\sin 2x)=0 \Rightarrow 5(\sin \alpha\cos 2x-\cos \alpha\sin 2x)=0\\ \Rightarrow 5\sin(\alpha-2x)=0 \Rightarrow \alpha-2x=0 \Rightarrow x=\alpha /2 \Rightarrow \tan x= \tan \alpha/2,其中\cases{\sin \alpha=3/5\\ \cos \alpha=4/5}\\ 由於\tan \alpha = {2\tan \alpha/2\over 1-\tan^2 \alpha/2} = {\sin \alpha \over \cos \alpha}={3\over 4} \Rightarrow (3\tan \alpha/2-1)(\tan \alpha/2+3)=0 \\ \Rightarrow \tan x=\tan \alpha/2 = 1/3 (\tan \alpha/2=-3不合,\because 0\le x\le \pi/2 \Rightarrow \tan x \gt 0),故選\bbox[red,2pt]{(A)}$$
解答$$令D為原點,則\cases{D(0,0)\\ B(-3,0)\\ C(3,0)\\ A(a,b)} \Rightarrow \cases{\overrightarrow{CB}=(-6,0)\\ \overrightarrow{AD} =(-a,-b)} \Rightarrow \overrightarrow{CB}\cdot \overrightarrow{AD} =6a;\\又\cases{\overline{AB}=9 \\ \overline{AC}=7} \Rightarrow \cases{(a+3)^2+b^2=9^2\\ (a-3)^2 +b^2 = 7^2},兩式相減\Rightarrow 12a=81-49=32 \Rightarrow a={8\over 3}\\ \Rightarrow \overrightarrow{CB}\cdot \overrightarrow{AD} =6a=6\times {8\over 3}=16,故選\bbox[red,2pt]{(C)}$$
解答$$圓心O在x+\sqrt 3y=4y上\Rightarrow O(4-\sqrt 3t,t);\\又圓與直線L_1:\sqrt 3x+y=0與x軸(L_2:y=0)相切,即 d(O,L_1)=d(O,L_2)=圓半徑 \\ \Rightarrow {|\sqrt 3(4-\sqrt 3t)+t|\over \sqrt{1+3}} =t \Rightarrow (2\sqrt 3-t)^2 =t^2  \Rightarrow t=\sqrt 3,故選\bbox[red,2pt]{(C)}$$
解答$$\cases{A(-2,-2,1)\\ B(4,1,-5)\\ C(1,1,1)} \Rightarrow \cases{\overrightarrow{AB} =(6,3,-6) \\ \overrightarrow{AC} =(3, 3,0)} \Rightarrow \cases{|\overrightarrow{AB}| =9 \\ |\overrightarrow{AC}| =3\sqrt 2 \\ \overrightarrow{AB}  \cdot \overrightarrow{AC} =27 } \\ \Rightarrow \triangle ABC ={1\over 2}\sqrt{|\overrightarrow{AB}|^2|\overrightarrow{AC}|^2 -(\overrightarrow{AB} \cdot \overrightarrow{AC})^2} ={1\over 2}\sqrt{81\times 18-27^2} ={27\over 2} \\ \Rightarrow \triangle ABC ={1\over 2}\overline{AB}\times \overline{CD} = {1\over 2}\times 9\times \overline{CD}= {27\over 2} \Rightarrow \overline{CD} =3,故選\bbox[red,2pt]{(B)}$$
解答


$$\cases{|z_1|=1 \\|z_2|=1} \Rightarrow A(z_1)及B(z_2)都在以原點為圓心的單位圓上,又|z_1-z_2|=1 \Rightarrow \overline{AB} =1,\\因此 \triangle OAB 為邊長為1的正三角形;令C(z_1+z_2),則\triangle ABC也是邊長為1的正三角形;\\\cos \angle OAC={\overline{AC}^2+ \overline{OA}^2 -\overline{OC}^2 \over 2\times \overline{AC}\times \overline{OA}} \Rightarrow \cos 120^\circ = -{1\over 2} ={1+1-\overline{OC}^2\over 2\times 1\times 1} \Rightarrow \overline{OC} =\sqrt 3,故選\bbox[red,2pt]{(C)}$$


2 則留言:

  1. 13題不是(0,0)-->(-1,2)才對

    回覆刪除
    回覆
    1. 謝謝提醒,已修訂,只是這題有點爭議!!0的0次方是1?!

      刪除