1 0 3 年 特 種 考 試 交 通 事 業 鐵 路 人 員 考 試
等 別:高員三級鐵路人員考試
類 科:電子工程
科 目:工程數學
甲、申論題部分:( 50 分)
解答:(一)(0,0)∈A且{(a1,a2)∈A⇒a1+a2=0(b1,b2)∈A⇒b1+b2=0⇒a1+b1+a2+b2=0⇒(a1+b1,a2+b2)∈A⇒(a1,a2)+(b1,b2)∈A⇒A是R2的子空間(二){(1,0)∈B(0,1)∈B⇒(1,0)+(0,1)=(1,1)∉B⇒B不是R2的子空間(三)(0,0)∉C⇒C不是R2的子空間解答:∇⋅(F×G)=∇(f2g3−f3g2,f3g1−f1g3,f1g2−f2g1)=∂∂x(f2g3−f3g2)+∂∂y(f3g1−f1g3)+∂∂z(f1g2−f2g1)=f2xg3+f2g3x−f3xg2−f3g2x+f3yg1+f3g1y−f1yg3−f1g3y+f1zg2+f1g2z−f2zg1−f2g1z=g1(f3y−f2z)+g2(f1z−f3x)+g3(f2x−f1y)+f1(g2z−g3y)+f2(g3x−g1z)+f3(g1y−g2x)=G⋅(∇×F)−F⋅(∇×G)⇒∇⋅(F×G)=G⋅(∇×F)−F⋅(∇×G),故得證
解答:
(一)f(z)=31−iz+2z2=3(2z+i)(z−i)=2i2z+i−iz−i2i2z+i=2i2(z−2i)+5i=2i5i(1+25i(z−2i))=25⋅11−2i5(z−2i)=25∞∑n=0(2i5(z−2i))niz−i=iz−2i+i=ii(1+z−2ii)=11+z−2ii=∞∑n=0(−1)n(z−2ii)n因此f(z)=∞∑n=0(25(2i5(z−2i))n+(−1)n(z−2ii)n)(二){|2i5(z−2i)|<1⇒−i2<z<9i2|z−2ii|<1⇒i<z<3i,兩者取交集可得收斂半徑:i<z<3i
解答:L{y(t)}=L{1}+L{∫t0y(t−α)sin(2α)dα}⇒Y(s)=1s+L{y(t)}L{sin(2t)}=1s+Y(s)×2s2+22⇒Y(s)=s2+4s(s2+2)=2s−ss2+2⇒y(t)=L−1{2s}−L−1{ss2+2}=2−cos(√2t)⇒y(t)=2−cos(√2t)
解答:{x=rcosθy=rsinθ⇒Ix=∫y2dA=∫π/20∫10r2sin2θ⋅rdrdθ=∫π/20∫10r3sin2θdrdθ=∫π/2014sin2θdθ=18∫π/20(1−cos(2θ))dθ=18[θ−12sin(2θ)]|π/20=π16≠π8,故選(C)
解答:∇ϕ=(ϕx,ϕy,ϕz)=(−x√x2+y2,−y√x2+y2,1),故選(A)
解答:∇f=(fx,fy,fz)=(2y+ez,2x,xez)⇒(2y+ez,2x,xez)|(1,1,1)=(2+e,2,e),故選(C)
解答:A為2×2矩陣,因此det
解答:A=\begin{bmatrix}2 & 1 & 0\\ 1 & 3& 2\\ 1& 4 & 1 \end{bmatrix} \Rightarrow \\A_{11}= \begin{vmatrix} 3& 2\\ 4 & 1 \end{vmatrix} =-5,A_{12}= \begin{vmatrix} 1 & 2\\ 1& 1 \end{vmatrix} =-1,A_{13}=\begin{vmatrix} 1 & 3 \\ 1& 4 \end{vmatrix} =1\\ A_{21}=\begin{vmatrix} 1 & 0 \\ 4& 1 \end{vmatrix} =1,A_{22}=\begin{vmatrix} 2 & 0 \\ 1& 1 \end{vmatrix} =2 ,A_{23}=\begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} =7,\\A_{31}=\begin{vmatrix} 1 & 0 \\ 3& 2 \end{vmatrix} =2,A_{32}=\begin{vmatrix} 2 & 0 \\ 1& 2 \end{vmatrix} =4, A_{33}=\begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} =5\\ \Rightarrow 輔因子矩陣=\begin{bmatrix}A_{11} & -A_{12} & A_{13}\\ -A_{21} & A_{22} & -A_{23}\\ A_{31} & -A_{32} & A_{33} \end{bmatrix} =\begin{bmatrix}-5 & 1 & 1\\ -1 & 2& -7\\ 2& -4 & 5 \end{bmatrix} ,故選\bbox[red,2pt]{(A)}
解答:\begin{bmatrix} 1 & 2 & 1& 0\\ 2 & 5 & 5 & 1\\ -2&-3 & 0 & 3\\ 1& 4&6& 4\end{bmatrix} \xrightarrow{-r_1+r_4,r_2+r_3} \begin{bmatrix} 1 & 2 & 1& 0\\ 2 & 5 & 5 & 1\\ 0& 2 & 5 & 4\\ 0& 2 &5 & 4\end{bmatrix} \xrightarrow{-2r_1+r_2,-r3+r_4} \begin{bmatrix} 1 & 2 & 1& 0\\ 0 & 1 & 3 & 1\\ 0& 2 & 5 & 4\\ 0& 0 &0 & 0\end{bmatrix}\\ \Rightarrow \text{Rank}(A)=3,故選\bbox[red,2pt]{(C)}
解答:M=PDP^{-1} \Rightarrow M^{-1}=PD^{-1}P^{-1},由於D為對角矩陣, D^{-1}也是對角矩陣\\,因此M與M^{-1}有相同之特徵向量,故選\bbox[red,2pt]{(D)}
解答:\cases{z_1=1-i\\ z_2=-2+4i\\ z_3=\sqrt 3-2i} \Rightarrow {z_1z_2\over z_3} ={(1-i)(-2+4i)\over \sqrt 3-2i} ={2+6i\over \sqrt 3-2i} ={(2+6i)( \sqrt 3+2i)\over (\sqrt 3-2i)(\sqrt 3+2i)}\\ = {-10+(4+6\sqrt 3)i\over 7} \Rightarrow 虛部為{4+6\sqrt 3\over 7},故選\bbox[red,2pt]{(A)}
解答:\lim_{n\to \infty} \left\{(1-{1\over n}) +i(1+{1\over n}) \right\} =1+i \Rightarrow \left\{(1-{1\over n}) +i(1+{1\over n}) \right\}收斂,故選\bbox[red,2pt]{(D)}
解答:\sin(\pi)=0且分母4次方為0,故選\bbox[red,2pt]{(D)}
解答:y'+2y=1 \Rightarrow \cases{y_h=c_1e^{-2t} \\ y_p=c_2=1/2} \Rightarrow y=c_1e^{-2t}+{1\over 2} \Rightarrow \lim_{t\to \infty}y(t) ={1\over 2},故選\bbox[red,2pt]{(B)}
解答:\cases{a_1={1\over \pi}\int_{-\pi}^\pi (x+\pi)\cos(x)\;dx = {1\over \pi}\left.\left[ x\sin(x)+\cos(x)+\pi \sin(x)\right] \right|_{-\pi}^\pi =0\\ b_1={1\over \pi}\int_{-\pi}^\pi (x+\pi)\sin(x)\;dx = {1\over \pi}\left.\left[ \sin(x)-x\cos(x)-\pi \cos(x) \right] \right|_{-\pi}^\pi = 2}\\ \Rightarrow a_1+b_1= 2,故選\bbox[red,2pt]{(C)}
解答:\mathcal{L}\{ f(t)\} =\mathcal{L}\{e^{-3t}\sin(5t)u(t)\} =\mathcal{L}\{e^{-3t}\sin(5t) \} ={5\over (s+3)^2+5^2} ={5\over s^2+6s+34},故選\bbox[red,2pt]{(B)}
解答:f(t)=\mathcal{L}^{-1}\{ {3s+2\over s^2+4s+5}\} =\mathcal{L}^{-1}\{ {3(s+2)-4\over (s+2)^2+1}\}=3\mathcal{L}^{-1}\{ {s+2 \over (s+2)^2+1}\}-4\mathcal{L}^{-1}\{{ 1\over (s+2)^2+1}\} \\ =3e^{-2t}\cos(t)-4e^{-2t}\sin(t) \Rightarrow f(0)=3,故選\bbox[red,2pt]{(D)}
解答:y'=3x^2-{y\over x} \Rightarrow xy'+y=3x^3 \Rightarrow \cases{y_h=c_1x^{-1}\\ y_p={3\over 4}x^3} \Rightarrow y=c_1x^{-1}+{3\over 4}x^3\\ y(1)=1 \Rightarrow c_1+{3\over 4}=1 \Rightarrow c_1= {1\over 4} \Rightarrow y={1\over 4x} +{3\over 4}x^3,故選\bbox[red,2pt]{(D)}
解答:\cos(\omega_0x)={1\over 2}(e^{i\omega_0x}+e^{-i\omega_0x}) \Rightarrow {1\over \sqrt{2\pi}} \int f'(x)\cos(\omega_0 x)e^{-i\omega x}dx \\= {1\over 2 } \left({1\over \sqrt{2\pi}}\int f'(x)(e^{ix(\omega_0-\omega)}+ {1\over \sqrt{2\pi}}\int f'(x)e^{-ix(\omega_0+\omega )})dx \right) \\={1\over 2}(i(\omega-\omega_0)F(\omega-\omega_0)+ i(\omega+\omega_0)F(\omega+\omega_0))\\ ={i\over 2}((\omega-\omega_0)F(\omega-\omega_0)+ (\omega+\omega_0)F(\omega+\omega_0)),故選\bbox[red,2pt]{(C)}
解答:X\sim B(n=100,p=0.2) \Rightarrow E(X)=np=100\times 0.2=20 \Rightarrow E(50-2X)=50-2E(X)\\ =50-2\times 20=10,故選\bbox[red,2pt]{(B)}
解答:\cases{從第1袋取出白球(機率=4/7)放入第2袋,再從第2袋取出黑球的機率為5/9 \\從第1袋取出黑球(機率=3/7)放入第2袋,再從第2袋取出黑球的機率為6/9};\\\Rightarrow 第2袋取出黑球的機率={4\over 7}\times {5\over 9}+ {3\over 7}\times {6\over 9}={38\over 63} ,故選\bbox[red,2pt]{(D)}
解答:\int f(x)\;dx =1 \Rightarrow \int_0^\infty Ae^{-4x}\;dx = \left.\left[ -{A\over 4}e^{-4x}\right]\right|_0^\infty ={A\over 4}=1 \Rightarrow A=4,故選\bbox[red,2pt]{(B)}
解答:L{y(t)}=L{1}+L{∫t0y(t−α)sin(2α)dα}⇒Y(s)=1s+L{y(t)}L{sin(2t)}=1s+Y(s)×2s2+22⇒Y(s)=s2+4s(s2+2)=2s−ss2+2⇒y(t)=L−1{2s}−L−1{ss2+2}=2−cos(√2t)⇒y(t)=2−cos(√2t)
乙、測驗題部分: (50 分)
解答:∇(f/g)=⟨∂∂x(f/g),∂∂y(f/g),∂∂z(f/g)⟩=⟨fxg−fgxg2,fyg−fgyg2,fzg−fgzg2⟩=1g2⟨gfx−fgx,gfy−fgy,gfz−fgz⟩=1g2(g⟨fx,fy,fz⟩−f⟨gx,gy,gz⟩)=1g2(g∇f−f∇g)≠1g2(f∇g−g∇f),故選(B)解答:{x=rcosθy=rsinθ⇒Ix=∫y2dA=∫π/20∫10r2sin2θ⋅rdrdθ=∫π/20∫10r3sin2θdrdθ=∫π/2014sin2θdθ=18∫π/20(1−cos(2θ))dθ=18[θ−12sin(2θ)]|π/20=π16≠π8,故選(C)
解答:∇ϕ=(ϕx,ϕy,ϕz)=(−x√x2+y2,−y√x2+y2,1),故選(A)
解答:∇f=(fx,fy,fz)=(2y+ez,2x,xez)⇒(2y+ez,2x,xez)|(1,1,1)=(2+e,2,e),故選(C)
解答:A為2×2矩陣,因此det
解答:A=\begin{bmatrix}2 & 1 & 0\\ 1 & 3& 2\\ 1& 4 & 1 \end{bmatrix} \Rightarrow \\A_{11}= \begin{vmatrix} 3& 2\\ 4 & 1 \end{vmatrix} =-5,A_{12}= \begin{vmatrix} 1 & 2\\ 1& 1 \end{vmatrix} =-1,A_{13}=\begin{vmatrix} 1 & 3 \\ 1& 4 \end{vmatrix} =1\\ A_{21}=\begin{vmatrix} 1 & 0 \\ 4& 1 \end{vmatrix} =1,A_{22}=\begin{vmatrix} 2 & 0 \\ 1& 1 \end{vmatrix} =2 ,A_{23}=\begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} =7,\\A_{31}=\begin{vmatrix} 1 & 0 \\ 3& 2 \end{vmatrix} =2,A_{32}=\begin{vmatrix} 2 & 0 \\ 1& 2 \end{vmatrix} =4, A_{33}=\begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} =5\\ \Rightarrow 輔因子矩陣=\begin{bmatrix}A_{11} & -A_{12} & A_{13}\\ -A_{21} & A_{22} & -A_{23}\\ A_{31} & -A_{32} & A_{33} \end{bmatrix} =\begin{bmatrix}-5 & 1 & 1\\ -1 & 2& -7\\ 2& -4 & 5 \end{bmatrix} ,故選\bbox[red,2pt]{(A)}
解答:\begin{bmatrix} 1 & 2 & 1& 0\\ 2 & 5 & 5 & 1\\ -2&-3 & 0 & 3\\ 1& 4&6& 4\end{bmatrix} \xrightarrow{-r_1+r_4,r_2+r_3} \begin{bmatrix} 1 & 2 & 1& 0\\ 2 & 5 & 5 & 1\\ 0& 2 & 5 & 4\\ 0& 2 &5 & 4\end{bmatrix} \xrightarrow{-2r_1+r_2,-r3+r_4} \begin{bmatrix} 1 & 2 & 1& 0\\ 0 & 1 & 3 & 1\\ 0& 2 & 5 & 4\\ 0& 0 &0 & 0\end{bmatrix}\\ \Rightarrow \text{Rank}(A)=3,故選\bbox[red,2pt]{(C)}
解答:M=PDP^{-1} \Rightarrow M^{-1}=PD^{-1}P^{-1},由於D為對角矩陣, D^{-1}也是對角矩陣\\,因此M與M^{-1}有相同之特徵向量,故選\bbox[red,2pt]{(D)}
解答:\cases{z_1=1-i\\ z_2=-2+4i\\ z_3=\sqrt 3-2i} \Rightarrow {z_1z_2\over z_3} ={(1-i)(-2+4i)\over \sqrt 3-2i} ={2+6i\over \sqrt 3-2i} ={(2+6i)( \sqrt 3+2i)\over (\sqrt 3-2i)(\sqrt 3+2i)}\\ = {-10+(4+6\sqrt 3)i\over 7} \Rightarrow 虛部為{4+6\sqrt 3\over 7},故選\bbox[red,2pt]{(A)}
解答:\lim_{n\to \infty} \left\{(1-{1\over n}) +i(1+{1\over n}) \right\} =1+i \Rightarrow \left\{(1-{1\over n}) +i(1+{1\over n}) \right\}收斂,故選\bbox[red,2pt]{(D)}
解答:\sin(\pi)=0且分母4次方為0,故選\bbox[red,2pt]{(D)}
解答:y'+2y=1 \Rightarrow \cases{y_h=c_1e^{-2t} \\ y_p=c_2=1/2} \Rightarrow y=c_1e^{-2t}+{1\over 2} \Rightarrow \lim_{t\to \infty}y(t) ={1\over 2},故選\bbox[red,2pt]{(B)}
解答:\cases{a_1={1\over \pi}\int_{-\pi}^\pi (x+\pi)\cos(x)\;dx = {1\over \pi}\left.\left[ x\sin(x)+\cos(x)+\pi \sin(x)\right] \right|_{-\pi}^\pi =0\\ b_1={1\over \pi}\int_{-\pi}^\pi (x+\pi)\sin(x)\;dx = {1\over \pi}\left.\left[ \sin(x)-x\cos(x)-\pi \cos(x) \right] \right|_{-\pi}^\pi = 2}\\ \Rightarrow a_1+b_1= 2,故選\bbox[red,2pt]{(C)}
解答:\mathcal{L}\{ f(t)\} =\mathcal{L}\{e^{-3t}\sin(5t)u(t)\} =\mathcal{L}\{e^{-3t}\sin(5t) \} ={5\over (s+3)^2+5^2} ={5\over s^2+6s+34},故選\bbox[red,2pt]{(B)}
解答:f(t)=\mathcal{L}^{-1}\{ {3s+2\over s^2+4s+5}\} =\mathcal{L}^{-1}\{ {3(s+2)-4\over (s+2)^2+1}\}=3\mathcal{L}^{-1}\{ {s+2 \over (s+2)^2+1}\}-4\mathcal{L}^{-1}\{{ 1\over (s+2)^2+1}\} \\ =3e^{-2t}\cos(t)-4e^{-2t}\sin(t) \Rightarrow f(0)=3,故選\bbox[red,2pt]{(D)}
解答:y'=3x^2-{y\over x} \Rightarrow xy'+y=3x^3 \Rightarrow \cases{y_h=c_1x^{-1}\\ y_p={3\over 4}x^3} \Rightarrow y=c_1x^{-1}+{3\over 4}x^3\\ y(1)=1 \Rightarrow c_1+{3\over 4}=1 \Rightarrow c_1= {1\over 4} \Rightarrow y={1\over 4x} +{3\over 4}x^3,故選\bbox[red,2pt]{(D)}
解答:\cos(\omega_0x)={1\over 2}(e^{i\omega_0x}+e^{-i\omega_0x}) \Rightarrow {1\over \sqrt{2\pi}} \int f'(x)\cos(\omega_0 x)e^{-i\omega x}dx \\= {1\over 2 } \left({1\over \sqrt{2\pi}}\int f'(x)(e^{ix(\omega_0-\omega)}+ {1\over \sqrt{2\pi}}\int f'(x)e^{-ix(\omega_0+\omega )})dx \right) \\={1\over 2}(i(\omega-\omega_0)F(\omega-\omega_0)+ i(\omega+\omega_0)F(\omega+\omega_0))\\ ={i\over 2}((\omega-\omega_0)F(\omega-\omega_0)+ (\omega+\omega_0)F(\omega+\omega_0)),故選\bbox[red,2pt]{(C)}
解答:X\sim B(n=100,p=0.2) \Rightarrow E(X)=np=100\times 0.2=20 \Rightarrow E(50-2X)=50-2E(X)\\ =50-2\times 20=10,故選\bbox[red,2pt]{(B)}
解答:\cases{從第1袋取出白球(機率=4/7)放入第2袋,再從第2袋取出黑球的機率為5/9 \\從第1袋取出黑球(機率=3/7)放入第2袋,再從第2袋取出黑球的機率為6/9};\\\Rightarrow 第2袋取出黑球的機率={4\over 7}\times {5\over 9}+ {3\over 7}\times {6\over 9}={38\over 63} ,故選\bbox[red,2pt]{(D)}
解答:\int f(x)\;dx =1 \Rightarrow \int_0^\infty Ae^{-4x}\;dx = \left.\left[ -{A\over 4}e^{-4x}\right]\right|_0^\infty ={A\over 4}=1 \Rightarrow A=4,故選\bbox[red,2pt]{(B)}
==================== END =======================
解題僅供參考,其他國考試題及詳解
沒有留言:
張貼留言