Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

網頁

2021年12月9日 星期四

103年高考三級-工程數學詳解

103年公務人員高等考試三級考試

類 科:電力工程、電子工程、電信工程、醫學工程
科 目:工程數學
甲、申論題部分:( 50 分)

解答y6y+9t0y(τ)dτ=4t3e3tL{y}6L{y}+9L{t0y(τ)dτ}=4L{t3e3t}sY(s)y(0)6Y(s)+9Y(s)s=43!(s3)4(s6+9s)Y(s)=24(s3)4(s3)2sY(s)=24(s3)4Y(s)=24s(s3)6=24(s3)5+72(s3)6y(t)=L1{4!(s3)5}+35L1{5!(s3)6}=t4e3t+35t5e3ty(t)=t4e3t+35t5e3t
解答A=[1a2a3an1000λ21+λ2a2λ2a3λ2an0100λ3λ3a21+λ3a3λ3an0010λnλna2λna31+λnan0001]1×(λk)k,k=2,,n[1a2a3an10000100λ21000010λ30100001λn001]k×(ak)1,k=2,,n[10001+nk=2λkaka2a3an0100λ21000010λ30100001λn001]A1=[1+nk=2λkaka2a3anλ2100λ3010λn001]
解答E:Ax+By+Cz=Dn=(A,B,C)nL:xA=yB=zCLPP(At,Bt,Ct),tRPEA2t+B2t+C2t=Dt=DA2+B2+C2P=(ADA2+B2+C2,BDA2+B2+C2,CDA2+B2+C2)
解答
(一)61656263(16)2(56)3C52C52(16)2(56)312(12)3(12)2C53C53(12)3(12)2C52(16)2(56)3×C53(12)3(12)2=552835(二)k6C5k(16)k(56)5k,k=0,..,565k=0[C5k(16)k(56)5k]2

乙、測驗題部分:(50 分)

解答{x(t)=ty(t)=tz(t)=t2{dx=dtdy=dtdz=2tdtCφds=20(t+t)x(t)2+y(t)2+z(t)2dt=202t2+4t2dt=18214udu(u=2+4t2du=8tdt)=16(183/223/2)=16(54222)=2632(D)
解答2(fg)=f2g+g2f+2fg(D)
解答cF(r)dt=π0[4sin2(t),t,4cos2(t)]dt=[2tsin(2t),12t2,2cos(2t)+2]|π0=[2π,12π2,2π](C)
解答{u=(1,1,1)v=(1,0,1)w=(0,1,0){u×(v×w)=u×(1,0,1)=(1,2,1)(u×v)×w=(1,0,1)×w=(1,0,1)u×(v×w)(u×v)×w(C)
解答A=[210120001]A1=[2/31/301/32/30001]det
解答(A) M(2,-4,6)^t= (8,-16,24)^t=4(2,-4,6)^t \Rightarrow (2,-4,6)為特徵向量\\(B)M(2,0,6)^t= (4,-16,12)^t \ne \lambda(2,0,6)\\ (C) M(2,2,0)^t= (-4,-4,0)^t =-2(2,2,0)^t\\ (D) M(-1,0,1)^t= (2,0,-2)^t =-2(-1,0,1)^t\\,故選\bbox[red,2pt]{(B)}
解答複數也可以為特徵值,故選\bbox[red,2pt]{(D)}
解答e^z=1+2i=\sqrt 5({1\over \sqrt 5}+{2\over \sqrt 5}i) =\sqrt 5(\cos \theta +i\sin\theta) =e^{\ln \sqrt 5+i\theta}  \\ \Rightarrow z=\ln \sqrt 5+i\theta,其中\cases{\cos \theta=1/\sqrt 5\\ \sin \theta=2/\sqrt 5} \Rightarrow \tan \theta=2 \Rightarrow \theta =\tan^{-1} 2\\ \Rightarrow z={1\over 2}\ln(5)+ i\tan^{-1}(2),故選\bbox[red,2pt]{(B)}
解答\det(A-\lambda I)=\begin{vmatrix}2-\lambda & 1 & 1-i\\ 1 &-\lambda & -i\\ 1+i & i & 2-\lambda \end{vmatrix} = \lambda^3-4\lambda^2+2=0 \Rightarrow \cases{\lambda_1+\lambda_2 +\lambda_3= 4\\ \lambda_1\lambda_2+ \lambda_2\lambda_3 +\lambda_3\lambda_1 = 0 \\ \lambda_1\lambda_2\lambda_3= -2}\\,故選\bbox[red,2pt]{(D)}
解答c_n={(3n)!\over (n!)^3} \Rightarrow {c_{n+1}\over c_n}={(3n+3)!\over ((n+1)!)^3} \cdot{ (n!)^3\over (3n)!} ={(3n+3)(3n+2)(3n+1)\over (n+1)^3} ={3(3n+2)(3n+1)\over (n+1)^2} \\ \Rightarrow \lim_{n\to \infty}\left|{c_{n+1}\over c_n} \right| =\lim_{n\to \infty}{3(3n+2)(3n+1)\over (n+1)^2}=27 \Rightarrow 收斂半徑={1\over 27}\\ \Rightarrow 符合條件|z-2i|\lt {1\over 27}收斂,故選\bbox[red,2pt]{(B)}
解答\int_C ze^{1/z}dz = \int_C z(1+{1\over z}+{1\over 2!z^2} +{1\over 3!z^3} +\cdots)\;dz = \int_C  (z+1+{1\over 2!z } +{1\over 3!z^2} +\cdots)\;dz \\={1\over 2}\int_C {1\over z}\;dz = {1\over 2}\times 2\pi i=\pi i,故選\bbox[red,2pt]{(B)}
解答(C)x^5y''+ 4x^4y'+2y=0 \Rightarrow y''+{4\over x}y'+ {2\over x^5}=0\\ x=0在{2\over x^5}是一個\text{pole of order 5},超過\text{order 2},為一個\text{irregular singular point},故選\bbox[red,2pt]{(C)}
解答Y(s)={-s+2 \over s^2+6s+8}={2\over s+2}-{3\over s+4} \\\Rightarrow y(x)= \mathcal{L}^{-1}\{Y(s)\}= 2\mathcal{L}^{-1}\{ {1\over s+2}\}-3\mathcal{L}^{-1}\{ {1\over s+4}\} =2e^{-2x}-3e^{-4x} \\ \Rightarrow y(x)=2e^{-2x}-3e^{-4x} \Rightarrow \cases{y_0=  y(0)=2-3=-1\\ y'+ay= (2a-4)e^{-2x}+(-3a+12)e^{-4x}=4e^{-2x} \Rightarrow a=4}\\ \Rightarrow a+y_0=4-1=3,故選\bbox[red,2pt]{(B)}
解答\mathcal{L}[\cos(\omega t+\phi)]= \mathcal{L}[ \sin(\omega t+\phi+\pi/2) ] ={\omega\cos( \phi+\pi/2)+ s\sin(\phi+\pi/2)\over s^2+\omega^2}\\ ={-\omega\sin( \phi )+ s\cos(\phi )\over s^2+\omega^2},故選\bbox[red,2pt]{(D)}
解答y''+\lambda y=0 \Rightarrow 特徵方程式r^2+\lambda=0 \Rightarrow r= \pm \sqrt{-\lambda} \\ \text{Cases 1:}\lambda \lt 0 \Rightarrow y=c_1e^{\sqrt{-\lambda}x} +c_2e^{-\sqrt{-\lambda}x},將y(0)=y(L)=0代入\Rightarrow c_1=c_2=0\\\text{Cases 2:}\lambda = 0 \Rightarrow y''=0 \Rightarrow y=c_1x+c_2,將y(0)=y(L)=0代入\Rightarrow c_1=c_2=0\\\text{Cases 3:}\lambda = \sigma^2\gt  0\Rightarrow r=\pm \sigma i \Rightarrow y= c_1\cos (\sigma x) +c_2\sin(\sigma x)\\ \qquad\quad將y(0)=y(L)=0代入\Rightarrow \cases{c_1=0\\ c_2\sin(\sigma L)=0} \\ \qquad\quad \Rightarrow \sigma ={m\pi\over L} \Rightarrow  \lambda_m= \sigma^2={m^2 \pi^2\over L^2},m=1,2,\dots,故選\bbox[red,2pt]{(B)}
解答y=x^2  \Rightarrow y''+Ay'+By = 2+2Ax+Bx^2,\\無法找到常數A,B使得對任意x皆滿足2+2Ax+Bx^2=0,故選\bbox[red,2pt]{(A)}
解答b_n={2\over L}\int_0^L x^2\sin{2n\pi\over L}x\;dx \\={2\over L} \left.\left[ -{L\over 2n\pi}x^2\cos\left({2n\pi\over L}x \right)+{L^2\over 2n^2\pi^2}x\sin \left({2n\pi\over L}x \right) +{L^3\over 4n^3\pi^3} \cos\left({2n\pi\over L}x \right) \right] \right|_0^L\\ ={2\over L}\left(-{L^3\over 2n\pi} \right) =-{L^2\over n\pi},故選\bbox[red,2pt]{(C)}
解答p(1,1)+p(1,2)+p(2,1)=1 \Rightarrow 2c+3c+5c=1 \Rightarrow c=1/10\\ \Rightarrow \cases{p(y=1)=p(1,1)+p(2,1)=7c=7/10\\ p(y=2)=p(1,2)=3c=3/10} \\ \Rightarrow \cases{E(Y)=\sum yp(y)=1\cdot p(y=1)+2\cdot p(y=2) =7/10+6/10=13/10\\ E(Y^2)=\sum y^2p(y) =1^2p(y=1)+2^2p(y=2)=7/10+12/10=19/10} \\ \Rightarrow Var(Y)=E(Y^2)-(E(Y))^2={19\over 10}-{169\over 100} ={21\over 100},故選\bbox[red,2pt]{(C)}
解答令\cases{A=(正,正)\\ B=(反,正)\\ C=(正,反)\\ D=(反,反)} \Rightarrow \cases{P(A)=1/6\\ P(B)=1/3\\ P(C)=1/6\\ P(D)=1/3}\\丟三次且符合題意的情形:AAB,AAC,AAD及其排列;\\因此\cases{P(AAB)=C^3_1P(A)P(A)P(B)=1/36\\ P(AAC)=C^3_1P(A)P(A)P(C)=1/72\\ P(AAD)=C^3_1P(A) P(A)P(D)= 1/36} \\ \Rightarrow P(AAB)+ P(AAC)+ P(AAD)=5/72,故選\bbox[red,2pt]{(B)}
解答正確篩檢+錯誤篩檢= 0.05\times 0.78+0.95\times 0.06=0.096,故選\bbox[red,2pt]{(B)}

========================= END ================================

解題僅供參考,其他國考試題及詳解

沒有留言:

張貼留言