等腰梯形ABCD中,\(\overline{AD}// \overline{BC}\)且\(\overline{AB}=\overline{CD}\),若\( \overrightarrow {AB}=(3,1),\overrightarrow{AD}=(-2,2)\),求\(\overrightarrow {CD}\)?
$$\overline{AD}// \overline{BC} \Rightarrow \overrightarrow{BC}= t(-2,2)=(-2t,2t) \\\Rightarrow \overrightarrow{CD} = \overrightarrow{CB}+\overrightarrow{BD} =(2t,-2t)+(-5,1) = (2t-5,-2t+1)\\ 又 |\overrightarrow{AB}|=|\overrightarrow{CD}| \Rightarrow |(3,1)|=|(2t-5,-2t+1| \Rightarrow 3^2+1^2 = (2t-5)^2+(-2t+1)^2 \\ \Rightarrow 8t^2-24t+16=0 \Rightarrow (t-2)(t-1)=0 \\ \Rightarrow t=\begin{cases} 2\\ 1 \end{cases}\Rightarrow \overrightarrow {CD}= \begin{cases} (2\times 2-5,-2\times 2+1)= (-1,-3)\\ (2\times 1-5, -2\times 1+1)=(-3,-1) (不合)\end{cases}\\,依據等腰梯形的定義,\angle ABC = \angle DCB,所以只有(-1,-3)符合,故:\overrightarrow {CD}=\bbox[red,2pt]{(-1,-3)}$$
為什麼(-3,-1)不行
回覆刪除已修訂,連題目也修訂了,謝謝提醒!!!
刪除(-3,-1)會造成ABCD是平行四邊形
刪除查了課綱,等腰梯形的兩底角需相等,所以(-3,-1)不合要求。解題已增修文字,謝謝!
刪除