臺北市立麗山高級中學108學年度第1次教師甄選
數學科試題卷
解:五座島最多可以蓋C52=10條橋,只蓋4條橋有C104=210種蓋法;其中不連通的方式:(1)4+1:4島相連,另一島不相連;4島互連可蓋C42=6座橋,任取4座,共有C64=15種情形;而五島選四島有C54=5種選法,因此蓋4橋有5×15=75種蓋法;(2)2+3:2島互連,另3島互連,共有C52=10種情形,每一種情形剛好蓋4座橋;因此蓋4橋可相連的方式有210−75−10=125種。
=====================================================================
解:令三切點的x坐標分別為α,β,γ⇒x6−10x5+29x4−4x3+ax2−bx−c=(x−α)2(x−β)2(x−γ)2⇒α+β+γ=10÷2=5 ===========================================================
解:令log2x=t⇒log√2x=2t⇒6log√2x−81+4(log2x)2=12t−81+4t2≡g(t)⇒g′(t)=121+4t2−8a(12t−8)(1+4t2)2=−4(6t+1)(2t−3)(1+4t2)2=0⇒{t=−1/6t=3/2⇒{x=1/6√2x=2√2⇒{f(1/6√2)=(−2−8)/(1+4/36)f(2√2)=(24√2−8)/(1+32)⇒f(2√2)>f(1/6√2)⇒a=2√2有最大值 ===========================================================
解:logab=c⇒b=ac,若{a=2xb=2y,其x,y∈{1,2,...,25}且x≠y⇒2y=(2x)c=2xc⇒cx=y⇒x∣y(x是y的因數)⇒xy數量12−252424,5,..,241136,9,..,24748,12,..,245510,15,20,254612,18,243714,212816,2429181102011122112241⇒24+11+⋯+1=62⇒機率為6225×24=31300
====================================================================
解:取3,32,…,32n的中間兩數3n及3n+1之間任一數,即可得最小之f(x),x∈[3n,3n+1]f(3n)=(3n−3)+(3n−32)+⋯+(3n−3n)+(3n+1−3n)+(3n+2−3n)+⋯(32n−3n)=n⋅3n−(3+32+⋯+3n)+(3n+1+3n+2+⋯+32n)−n⋅3n=3n(3+32+⋯+3n)−(3+32+⋯+3n)=(3n−1)(3+32+⋯+3n)=(3n−1)3n+1−33−1=(3n−1)3(3n−1)2=32(3n−1)2
======================================================================
解:
假設圓半徑為1⇒¯OA=¯OB=¯OC=¯OD=1△BCD:∠DBC=180∘−45∘−75∘=60∘⇒∠DOC=2∠DBC=120∘⇒∠ODC=∠OCD=(180∘−120∘)÷2=30∘△OCD:¯OCsin30∘=¯CDsin120∘⇒11/2=¯CD√3/2⇒¯CD=√3△BCD:¯CDsin60∘=¯BCsin45∘⇒√3√3/2=¯BC1/√2⇒¯BC=√2△BCD:cos∠DBC=cos60∘=¯BD2+2−32√2ׯBD⇒¯BD=√2+√62又∠DAC=∠DBC=60∘⇒△OAD為一正△⇒¯AD=1直角△ABC:{¯AC=2¯BC=√2⇒¯AB=√2令{B為原點→BC為x軸→BA為y軸⇒{B(0,0)C(√2,0)A(0,√2)O(√2/2,√2/2),又↔BD斜率為tan60∘=√3⇒D(t,t√3)由¯AD=1⇒t2+(t√3−√2)2=1⇒t=√2+√64⇒D(√2+√64,3√2+√64)→BD=a→OA+b→OB⇒(√2+√64,3√2+√64)=a(−√22,√22)+b(−√22,−√22)⇒{a+b=−√2+√62√2a−b=√6+3√22√2⇒(a,b)=(12,−2−√32)... =============================================================
解:P為橢圓上的切點,其切線斜率與L斜率相同;9x2+4y2=36⇒ddx(9x2+4y2)=ddx36⇒18x+8yy′=0⇒y′=18x−8y=−34(L的斜率)⇒y=3x代回橢圓方程式⇒9x2+36x2=36⇒x2=45⇒x=−2√5(x=2√5為最近的切點)⇒y=3x=−6√5⇒P坐標為(−2√5,−6√5) ====================================================================
解:六面分別為1,1,1,2,2,3,其中有4個奇數,2個偶數⇒P1=26=13又偶數=偶數+偶數或奇數+奇數⇒Pn=Pn−1×13+(1−Pn−1)×23=23−13Pn−1⇒Pn=2(13−132+133−⋯+13n(−1)n−1)⋯(1)⇒13Pn=2(132−133+134−⋯+13n+1(−1)n−1)⋯(2)式(1)+式(2)⇒43Pn=2(13−13n+1(−1)n−1)⇒Pn=32(13−13n+1(−1)n−1)⇒limn→∞Pn=32(13−0)=12
============================================================
解:n+2n!+(n+1)!+(n+2)!=n+2n!(1+(n+1)+(n+2)(n+1))=n+2n!(n+2)2=1n!(n+2)=n+1(n+2)(n+1)n!=n+1(n+2)!=(n+2)−1(n+2)!=1(n+1)!−1(n+2)!⇒2017∑n=1n+2n!+(n+1)!+(n+2)!=2017∑n=1(1(n+1)!−1(n+2)!)=(12!−13!)+(13!−14!)+⋯+(12018!−12019!)=12!−12019! ===============================================================
解:x2+y2=x+y=n⇒(x+y)2=x2+y2+2xy⇒n2=n+2xy⇒xy=(n2−n)/2⇒(x−y)2=(x+y)2−4xy=n2−2(n2−n)=2n−n2⇒x−y=√2n−n2(負值不合,因為x>y)⇒x4−y4=(x2+y2)(x2−y2)=(x2+y2)(x+y)(x−y)=n2⋅√2n−n2=√2n5−n6令f(n)=2n5−n6⇒f′(n)=0⇒10n4−6n5=0⇒2n4(5−3n)=0⇒n=0,5/3⇒f″(n)=40n3−30n4⇒{f″(0)=0f″(5/3)<0⇒n=5/3時,f(n)有極大值⇒M=5232√103−5232=25√527⇒(n,M)=(53,25√527) =======================================================================
解:limn→∞1n√1−k24n2=2limn→∞12n√1−(k2n)2=2∫1/20√1−x2dx=2∫π/60√1−sin2ucosudu(其中sinu=x)=[12sin2u+u]|π/60=√34+π6 ==========================================================
解:{P(x,y,z)A(1,−1,2)B(1,1,0)C(1,0,4)⇒¯AP2+¯BP2+¯CP2=(x−1)2+(y+1)2+(z−2)2+(x−1)2+(y−1)2+z2+(x−1)2+y2+(z−4)2=3((x−1)2+y2+(z−2)2)+10柯西不等式:((x−1)2+y2+(z−2)2)(12+12+12)≥(x+y+z−3)2=(0−3)2=9⇒(x−1)2+y2+(z−2)2≥93=3⇒3((x−1)2+y2+(z−2)2)+10≥3×3+10=19 ============================================================
解:n3+108=(n+11)(n2−11n+121)−1223⇒n3+108n+11=(n2−11n+121)−1223n+11⇒n=1223−11=1212為最大的整數使用得n3+108n+11也是整數
============================================================
解:令sinu=x−34⇒cosudu=14dx,則∫√−x2+6x+7dx=∫√−(x−3)2+42dx=∫4√1−(x−34)2dx=∫4√1−sin2u⋅4cosudu=16∫√cos2u⋅cosudu=16∫cos2udu=8∫cos2u+1du=4sin2u+8u=8sinucosu+8u=8⋅x−34⋅√−x2+6x+74+8sin−1x−34=x−32⋅√−x2+6x+7+8sin−1x−34因此∫71(−2+√−x2+6x+7)dx=[−2x+x−32⋅√−x2+6x+7+8sin−1x−34]|71=(−14+0+8sin−11)−(−2+(−1)⋅2√3+8sin−1−12)=−12+2√3+8⋅π2−8⋅−π6=−12+2√3+163π ============================================================
正八邊形每一內角為(8−2)×180÷8=135∘⇒∠EFB=180∘−135∘=45∘⇒∠BEF=∠ABC−∠AFE=60∘−45∘=15∘⇒∠CED=180∘−135∘−15∘=30∘⇒∠CDE=30∘⇒¯CD=¯CE=2;△CDE:cos∠CDE=cos120∘=22+22−¯DE22×2×2⇒−12=8−¯DE28⇒¯DE=2√3;△BEF:¯EFsin∠EBF=¯EBsin∠EFB=¯BFsin∠BEF⇒2√3sin120∘=¯EBsin45∘=¯BFsin15∘⇒2√3√3/2=¯EB1/√2=¯BF(√6−√2)/4⇒{¯EB=2√2¯BF=√6−√2⇒¯AF=¯AB+¯BF=¯CE+¯EB+¯BF=2+2√2+√6−√2=2+√6+√2===============================================================
解:(1)f(x+2y)=f(x)+g(y)⇒f′(x+2y)=f′(x)⇒f′(s)=f′(t)∀s,t⇒f′(x)=c,c為常數(2)f′(x)=c⇒f(x)=cx+d,其中c,d為常數;又{f(0)=1⇒d=1f′(0)=2⇒c=2⇒f(x)=2x+1⇒f(x+2y)=2x+4y+1=f(x)+g(y)=2x+1+g(y)⇒g(y)=4y⇒g(5)=20
解:
假設{O:外接圓圓心P:內切圓圓心R:外接圓半徑r:內切圓半徑⇒¯AG=¯AOcosϕ2=Rcosϕ2⇒¯AB=2¯AG=2Rcosϕ2⇒¯AF=¯ABcosϕ2=2Rcos2ϕ2⇒¯OP=¯AF−R−r=2Rcos2ϕ2−R−r¯GO∥¯EP⇒¯GO¯EP=¯AO¯AP(=¯AO+¯OP)⇒Rsinϕ2r=RR+(2Rcos2ϕ2−R−r)=R2R(1−sin2ϕ2)−r令{x=sinϕ2r=kR=(1+√2)k,則上式為x1=12(1+√2)(1−x2)−1⇒(2+2√2)x3−(1+2√2)x+1=0⇒(x+1)((2+2√2)x2−(2+2√2)x+1)=0⇒{x=−1(不合,∵ϕ/2≠270∘)x=(2+√2)±22(2+2√2)=√22或2−√22⇒sinϕ2=x=√22,2−√22 =============================================================
解:
假設立方體邊長為a,A為原點及P(x,y,z),則{A(0,0,0)B(a,0,0)C(a,a,0)D(0,a,0)E(0,0,a)F(a,0,a)G(a,a,a)H(0,a,a),如圖;{¯PA=√2¯PB=¯PD=√3¯PE=1⇒{x2+y2+z2=2⋯(1)(x−a)2+y2+z2=3⋯(2)x2+(y−a)2+z2=3⋯(3)x2+y2+(z−a)2=1⋯(4),由(1)得{y2+z2=2−x2代入(2)⇒(x−a)2+2−x2=3⇒x=(a2−1)/2ax2+z2=2−y2代入(3)⇒2−y2+(y−a)2=3⇒y=(a2−1)/2ax2+y2=2−z2代入(4)⇒2−z2+(z−a)2=1⇒z=(a2+1)/2a將P(a2−12a,a2−12a,a2+12a)代回(1)⇒(a2−1)24a2+(a2−1)24a2+(a2+1)24a2=2⇒3a4−2a2+3=8a2⇒3a4−10a2+3=0⇒(3a2−1)(a2−3)=0⇒a=√3(a=1/√3⇒x<0,y<0⇒P在立方體外)⇒體積=a3=(√3)3=3√3
=======================================================================
解:(1)f(x+2y)=f(x)+g(y)⇒f′(x+2y)=f′(x)⇒f′(s)=f′(t)∀s,t⇒f′(x)=c,c為常數(2)f′(x)=c⇒f(x)=cx+d,其中c,d為常數;又{f(0)=1⇒d=1f′(0)=2⇒c=2⇒f(x)=2x+1⇒f(x+2y)=2x+4y+1=f(x)+g(y)=2x+1+g(y)⇒g(y)=4y⇒g(5)=20
=================================================================
註:解題僅供參考
第5題,3的k次冪,應是3*k,解法就合理。若是3的k次冪,好像x=3的2n次冪,才會使和為最小。
回覆刪除