2021年1月7日 星期四

106年南二中教甄-數學詳解

國立臺南第二高級中學106學年度第1次教師甄選

一、填充題
:$$\cases{A(1,1,2)\\ B(-1,0,3) \\C(3,8,1)} \Rightarrow \cases{\vec u=\overrightarrow{AB} =(-2,-1,1)\\ \vec v= \overrightarrow{AC} =(2,7,-1)} \Rightarrow \triangle ABC面積= {1\over 2}\sqrt{|\vec u|^2|\vec v|^2- (\vec u\cdot \vec v)^2} \\ ={1\over 2}\sqrt{6\cdot 54-144}= 3\sqrt 5;\\ 又\vec n=\vec u\times \vec v=-6(1,0,2) \Rightarrow 平面ABC方程式: (x-1)+2(z-2)=0 \Rightarrow E:x+2z=5\\ L:\cases{2x+y-z=3\\ x-y+7z=9} \Rightarrow \cases{x=4-2z\\ y=5z-5} \Rightarrow L上的點可表示成D(4-2t,5t-5,t),t\in R\\ \Rightarrow \text{dist}(D,E)={|4-5|\over \sqrt 5} ={1\over \sqrt 5} \Rightarrow 四面體ABCDE體積= {1\over 3} \times \triangle ABC面積\times \text{dist}(D,E)\\={1\over 3}\times 3\sqrt 5\times {1\over \sqrt 5}= \bbox[red,2pt]{1}$$
:$$\cases{\overline{AD}=5\\ \overline{AB}=3 \\\overline{BD}=4} \Rightarrow \cases{\triangle ABD為直角三角形\\ \angle ABD=90^\circ} \Rightarrow 斜邊上的高h={3\times 4\over 5} ={12\over 5} \\ \Rightarrow B繞Z軸旋轉所得圓\Gamma面積=h^2\pi = {144\over 25}\pi \\\Rightarrow 底面\Gamma 與D及A形成兩圓錐體,兩圓錐體體積和={1\over 3}\times {144\pi\over 25}\times \overline{AD} ={48\pi \over 25}\times 5= \bbox[red,2pt]{48\pi \over 5}$$
:$${\pi\over 2} \lt x \le {3\over 2}\pi \Rightarrow -1\le \cos x \le 0 \Rightarrow y={5\cos x\over 3-\cos x} =-5+{15\over 3-\cos x} \\ \Rightarrow -5+{15 \over 3-(-1)}\le y \le -5+{15\over 3-0} \Rightarrow -5+{15 \over 3-(-1)}\le y \le -5+{15\over 3-0} \\\Rightarrow \bbox[red,2pt]{-{5\over 4} \le y \le 0}$$
:$$\alpha=x+yi,其中x,y\in R \Rightarrow \cases{\beta=(-1+i)\alpha =(-x-y)+(x-y)i\\ |\alpha-3|=1 \Rightarrow (x-3)^2+y^2=1 \Rightarrow (x,y)=(\cos\theta+3,\sin\theta)} \\ \Rightarrow \cases{\vec u=\overrightarrow{OA}=(x,y)\\ \vec v=\overrightarrow{OB}=(-x-y,x-y)} \Rightarrow \triangle OAB面積={1\over 2} \sqrt{|\vec u|^2|\vec v|^2-(\vec u\cdot \vec v)^2} \\={1\over 2}\sqrt{(x^2+y^2)(2(x^2+y^2))-(x^2+y^2)^2} ={1\over 2}(x^2+y^2) ={1\over 2}((\cos \theta+3)^2+\sin^2\theta))\\ ={1\over 2}(10 +6\cos \theta) \Rightarrow \cases{\theta=0^\circ時,有最大值8\\ \theta=180^\circ時,有最小值2} \Rightarrow 最大值+最小值=\bbox[red,2pt]{10}$$
:$$f(x)=\sqrt{x+1\over 6+x-x^2} =\sqrt{x+1\over -(x-3)(x+2)} \Rightarrow \cases{(x+1)(x-3)(x+2) \le 0\\ x\ne 3\\ x\ne -2} \\ \Rightarrow \bbox[red,2pt]{-1\le x\lt 3或x\lt -2}$$
:$$7242409 = 703\times 101\times 102+103 \Rightarrow (724240)^{10} =\sum_{k=0}^{10} C^{10}_k(703\cdot 101\cdot 102)^k\cdot (103)^{10-k}\\ \equiv (103)^{10} \mod (101\cdot 102);以下皆使用二項式求餘數;\\(103)^{10}=(103\cdot 103)^{5}= ((102+1)\cdot (101+2))^5 =(101\cdot 102+307)^5 \equiv 307^5 \mod (101\cdot 102)\\ 307^5 = (307\cdot 307)^2\cdot 307 =(9\cdot 101\cdot 102+ 1531)^2 \cdot 307 \equiv 1531^2\cdot 307 \mod (101\cdot 102)\\ 1531^2\cdot 307= (45\cdot 101\cdot 102+6427)\cdot 1531 \equiv 6427\cdot 1531 \mod (101\cdot 102)\\ 6427\cdot 1531 = (63\cdot 102+1)(15\cdot 101+16) \equiv  16\cdot 63\cdot 102+ 15\cdot 101+16  \mod (101\cdot 102)\\ \Rightarrow 16\cdot 63\cdot 102+ 15\cdot 101+16=10\cdot 101\cdot 102+1327 \equiv \bbox[red,2pt]{1327} \mod (101\cdot 102)$$
:$$f(x)=2x^6-3x^5+4x^4-3x^3+4x^2-3x+2\\ f(\pm 1)\ne 0,f(\pm 2)\ne 0,試x^3=\pm 1,可得x^2+x+1及x^2-x+1皆為f(x)之因式\\ \Rightarrow f(x)=(x^2+x+1) (x^2-x+1)(2x^2-3x+2)\\ 因此f(x)=0 \Rightarrow x={-1\pm \sqrt 3i\over 2},{ 1\pm \sqrt 3i\over 2}, {3\pm \sqrt 7i\over 4} \\ \Rightarrow 在第一象限的解為\bbox[red,2pt]{{ 1+ \sqrt 3i\over 2}, {3+ \sqrt 7i\over 4}}$$
$$答案是\bbox[red,2pt]{381654729},詳細說明可參考以下超連結\href{https://mathcenter.ck.tp.edu.tw/Resources/Ctrl/ePaper/ePaperOpenFileX.ashx?autoKey=1024}{按這裡}$$
:$$a_n=n^3+2n^2-200n = n((n+1)^2-201) \Rightarrow \cases{a_n < 0,\text{if }n\le 13\\ a_n > 0,\text{if }n\ge 14}; \\因此 \sum_{n=1}^{20}|a_n| =\sum_{n=1}^{13}(200n-2n^2-n^3)+ \sum_{n=14}^{20}(n^3+2n^2-200n)\\ =200\cdot {14\times 13\over 2}-2\cdot {13\times 14\times 27\over 6}-\left({14\times 13\over 2}\right)^2+ \left[\left({21\times 20\over 2}\right)^2 -\left({14\times 13\over 2}\right)^2\right]\\\qquad +2\left[{20\times 21\times 41\over 6}-{13\times 14\times 27\over 6} \right]-200\cdot {34\times 7\over 2} \\ =18200-1638-8281+35819 +2 \times 2051-23800 =\bbox[red,2pt]{24402}$$

 :$$\cases{A:萬位數字\\B:千位數字\\C:百位數字\\D:十位數字\\ E:個位數字} \Rightarrow A+B+C+D+E \le 10且A,B,C,D,E \in \{0,..,9\} \\ \Rightarrow A+B+C+D+E +F= 10且A,B,C,D,E,F \in \{0,..,9\} \\ \Rightarrow 共有H^6_{10}= C^{15}_{10}=3003 組解,但需扣除A=10,B=10,...,F=10,共6組\\,再加上十萬數字100000這1組;因此k=3003-6+1 = \bbox[red,2pt]{2998}$$

:$$令G為重心\Rightarrow \overrightarrow{GH}= 2\overrightarrow{OG} \Rightarrow \overrightarrow{GA} + \overrightarrow{AH}= 2(\overrightarrow{OA} +\overrightarrow{AG}) \Rightarrow  \overrightarrow{AH}= -2 \overrightarrow{AO}+3  \overrightarrow{AG} \\ =-2({2\over 5} \overrightarrow{AB}+{1\over 4} \overrightarrow{AC})+3\cdot {2\over 3}({1\over 2} \overrightarrow{AB}+{1\over 2} \overrightarrow{AC}) ={1\over 5} \overrightarrow{AB}+{1\over 2} \overrightarrow{AC} \Rightarrow (x,y)= \bbox[red,2pt]{({1\over 5},{1\over 2})}$$


:$$x+\log_2(kx^2) = x+2^{|x|} \Rightarrow \log_2(kx^2) = 2^{|x|},相當於求兩圖形\cases{y=f(x)=\log_2(kx^2) \\y =g(x)=2^{|x|}}的交點;\\由於兩圖形皆對稱於y軸,即\cases{f(x)=f(-x)\\ g(x)=g(-x)},因此交點也對稱y軸;\\令原函數交點為\cases{A(a, a+ \log_2(ka^2))\\ B(-a,-a+\log_2(ka^2))} \Rightarrow \overline{AB}= \sqrt{4a^2+4a^2} =6\sqrt 2 \Rightarrow 8a^2=72 \\ \Rightarrow a^2=9 \Rightarrow A(3,3+\log_2(9k))代入另一函數\Rightarrow 3+\log_2(9k)=3+2^{|3|} \\ \Rightarrow \log_2(9k) = 8 \Rightarrow k={2^8\over 9} =\bbox[red,2pt]{256\over 9}$$


:$$2人猜拳分出勝負次數的期望值E_2: \\\Rightarrow E_2=P(平手)(再猜一次)+P(分出勝負)\cdot (只猜1次) ={1\over 3}(E_2+1)+ {2\over 3}\cdot 1\\ \Rightarrow E_2 ={3\over 2}\\3人猜拳分出勝負次數的期望值E_3: \\\Rightarrow P(平手)(再猜一次)+ P(分出勝負)\cdot (只猜1次) +P(1人輸,2人勝)\cdot (再猜E_2次) \\ \Rightarrow E_3={1\over 3}(E_3+1)+{1\over 3}\cdot 1+{1\over 3}(1+E_2(={3\over 2})) \Rightarrow E_3=\bbox[red,2pt]{9\over 4}$$
:$$a_n ={(2n)^2\over (2n-1)(2n+1)} ={4n^2 \over 4n^2-1} =1+{1\over 4n^2-1}=1+{1\over 2}({1\over 2n-1}-{1\over 2n+1})\\ \Rightarrow S= \sum_{n=1}^{1008}\left(1+{1\over 2}({1\over 2n-1}-{1\over 2n+1}) \right) \Rightarrow 2S= \sum_{n=1}^{1008} \left(2+ {1\over 2n-1}-{1\over 2n+1} \right) \\=2\times 1008+{1\over 1}-{1\over 3} +{1\over 3}-{1\over 5}+ \cdots + {1\over 2015} -{1\over 2017} =2016+1-{1\over 2017} \approx\bbox[red,2pt]{2017}$$

二、計算與證明題


(1)$$\overline{PS}= \overline{OP}\sin \theta = 3\sin \theta\\ \overline{RS}= \overline{OS}-\overline{OR}= 3\cos \theta-\overline{OQ}\cos {\pi\over 3} = 3\cos \theta-\overline{QR}\csc{\pi\over 3}\cos {\pi\over 3} \\= 3\cos\theta -3\sin \theta \times {2\over \sqrt 3}\times {1\over 2} =3\cos\theta -\sqrt 3\sin \theta\\ \Rightarrow \bbox[red,2pt]{\cases{\overline{RS}= 3\cos \theta -\sqrt 3\sin \theta\\ \overline{PS}=3\sin \theta}}$$(2)$$面積= \overline{RS}\times \overline{PS} =( 3\cos \theta -\sqrt 3\sin \theta)3\sin \theta =9\sin \theta\cos \theta-3\sqrt 3\sin^2\theta \\ ={9\over 2}\sin 2\theta- 3\sqrt 3({1-\cos 2\theta \over 2}) ={9\over 2}\sin 2\theta +{3\sqrt 3\over 2}\cos 2\theta -{3\sqrt 3\over 2} \\ \Rightarrow 最大值為\sqrt{({9\over 2})^2 +({3\sqrt 3\over 2})^2}-{3\sqrt 3\over 2} = \sqrt{108\over 4}-{3\sqrt 3\over 2} ={6\sqrt 3\over 2}-{3\sqrt 3\over 2} =\bbox[red,2pt]{{3\sqrt 3\over 2}}$$

(1)$$\cases{a_3=4\times 3\times 2=24\\ a_4= 4\cdot 3\cdot 2\cdot 2+ 4\cdot 3\cdot 3\cdot 1=84} \Rightarrow \bbox[red,2pt]{\cases{a_3=24\\ a_4=84}}$$(2)$$a_n+a_{n-1} =k(k-1)^{n-1} = 4\cdot 3^{n-1} \Rightarrow a_n=(k-1)^n+ (-1)^n(k-1)=3^n+3(-1)^n\\ \Rightarrow \bbox[red,2pt]{a_n= 3^n+3(-1)^n,n\ge 3}$$

:$$f(x)=\sqrt{x^4-3x^2+4} +\sqrt{x^4-3x^2-8x+20} =\sqrt{x^2 +(x^2-2)^2} +\sqrt{(x-4)^2 +(x^2-2)^2}\\ \Rightarrow f(x)= \overline{PA} +\overline{PB},其中\cases{A(0,2)\\ B(4,2) \\ P(x,x^2)} \Rightarrow f(x)的最小值出現在直線L: \overleftrightarrow{AB} 與拋物線\Gamma:y=x^2的交點上;\\將L:y=2代入\Gamma \Rightarrow x^2=2 \Rightarrow x= \sqrt 2 (\sqrt 2 不合,\because 0 \lt x\lt 4) \Rightarrow f(\sqrt 2)= \sqrt{2}+ \sqrt{(\sqrt 2-4)^2} \\ =\sqrt 2+ 4-\sqrt 2= 4 \Rightarrow \bbox[red,2pt]{最小值為4,此時x=\sqrt 2}$$


3 則留言:

  1. 您好:請問第12題的交點對稱y軸,那是不是這兩個交點的y座標要一樣呢?可是跟假設不合,請問為什麼呢?謝謝

    回覆刪除
    回覆
    1. 原來的兩圖形y1,y2並沒對稱y軸,只有A、B的x坐標對稱y軸,但y坐標各異;只是求原兩圖形的交點,相當於求兩個對稱y軸圖形的交點,依此特性來斷定A(a,y1(a)), B(-a,y2(-a)).

      刪除