中央警察大學 110 學年度碩士班入學考試試題
所 別:消防科學研究所
科 目:微積分(同等學力加考)
解答:$$\mathbf{(一)}\;f(x)={1\over x} \Rightarrow f(-x)=-{1\over x}=-f(x) \Rightarrow f(x)為奇函數\Rightarrow \int_{-1}^1 {1\over x}\,dx =\bbox[red, 2pt]0\\ \mathbf{(二)}\; \int 2^x\,dx = \int e^{x\ln 2}\,dx = {1\over \ln 2} e^{x\ln 2}+C = \bbox[red, 2pt]{{1\over \ln 2}2^x+C} \\\mathbf{(三)}\; \int 0\,dx =\bbox[red,2pt]{C為一常數}$$
解答:$$\mathbf{(一)}\;兩圖形\cases{x^2-y=0\\ x^2+y=8} 的交點\cases{A(-2,4)\\ B(2,4)} \Rightarrow 所圍面積=\int_{-2}^2 (8-x^2)-x^2\,dx =\int_{-2}^2 8-2x^2 \,dx \\\qquad =\left. \left[ 8x-{2\over 3}x^3 \right] \right|_{-2}^2 =32-{32\over 3} =\bbox[red,2pt]{ 64\over 3} \\ \mathbf{(二)}\; \int_0^{2\pi} \int_0^{2(1+\cos\theta)} r\,drd\theta = \int_0^{2\pi} {1\over 2}({2(1+\cos\theta)})^2 \,d\theta= \int_0^\pi 4(1+\cos\theta)^2 \,d\theta \\ \qquad = \int_0^\pi 4+ 8\cos\theta +4\cos^2\theta\,d\theta =\int_0^\pi 6+ 8\cos\theta +2\cos 2\theta\,d\theta = \left. \left[6\theta +8\sin \theta +\sin 2\theta \right] \right|_0^\pi \\\qquad = \bbox[red,2pt]{6\pi}$$
解答:$$\mathbf{(一)}\;x=\sqrt{2t^2+1} \Rightarrow y=x^2-4x= 2t^2+1-4\sqrt{2t^2+1} \Rightarrow {dy\over dt}= 4t-{8t \over \sqrt{2t^2+1}}\\ \qquad \Rightarrow \left. {dy\over dt}\right|_{t=2} =8-{16\over 3} =\bbox[red, 2pt]{8\over 3}\\\mathbf{(二)}\; y=6 x^{2/3}-4x^{-1/2 } \Rightarrow y'=4x^{-1/3}+2x^{-3/2} \Rightarrow y'(1)=6 \\ \qquad \Rightarrow 切線:y=6(x-1)+2 \Rightarrow \bbox[red,2pt]{y=6x-4}$$
==================== END =======================
沒有留言:
張貼留言