Processing math: 54%

2020年8月21日 星期五

107年全國高中職教甄聯招-數學科詳解


教育部受託辦理107學年度
公立高級中等學校教師甄選
數學科試題
第一部分:選擇題
一、單選題




解:
{A(0,0,0)B(2,0,0)C(2,2,0)D(0,2,0)E(1,0,0)F(0,1,0)G(2,2,1){GE=(1,2,1)GF=(2,1,1)n=GE×GF=(1,1,3)EFG:(x1)+y3z=0x+y3z1=0DEFG=0+2+0112+12+32=111(A)



解:
{log8a+log4b=3log8b+log4a=7{13log2a+12log2b=313log2b+12log2a=7,56(log2a+log2b)=10log2ab=12ab=212=4096(D)


解:
b(a,b,c)6×3×6=108;|abbc|>0ac>b2b()ac215622364342610561612436145625463636438381080.352(C)


解:
{f(a,b)=2a+1+3b+2g(a,b)=a+b2,Lagrange {af=λagbf=λbgg=0{12a+1=λ(1)323b+2=λ(2)a+b=2(3),(1)(2)12a+1=323b+212a+1=912b+818a12b+1=0(4)(3)(4){a=23/30b=37/30f(23/30,37/30)=4630+1+11130+2=7630+17130=21930+31930=51930=557030=5706(B)


解:
R,B,YRRRBBYa,b,c;abcRRRBBYRYBBBBRYBYRBRBRRBYRBRYRYRBBYRRRYRRBBRBRBBBRRBBRRRYRYRRBYRRRBRBRR15(B)


解:
{a+b+c+d+e=10a2+b2+c2+d2+e2=205/4{a+b+d+e=10ca2+b2+d2+e2=205/4c2西:(a2+b2+d2+e2)(12+12+12+12)(a+b+d+e)2(2054c2)×4(10c)22054c2c220c+1005c220c1050c24c210(c7)(c+3)03c7{k=7t=3(A)


解:
{6x+y822x+y0{P(16,8)Q(18,10)R(14,8)S(12,6);AB=|A||B|cos60=1×2×12=1uv=(A+B)(xA+yB)=x|A|2+(x+y)AB+y|B|2=x+(x+y)+4y=2x+5y;f((x,y))=2x+5y{f(P)=3240=8f(Q)=3650=14f(R)=2840=12f(S)=2430=6uv6(C)


解:
:¯ACsinB=¯ABsinC=2R25/13sinB=3sinC=2×52=5{sinB=5/13sinC=3/5{cosB=12/13cosC=4/5¯BC=¯ABcosB+¯ACcosC=36132013=1613:cosBAC=32+(25/13)2(16/13)223(25/13)=9+36916915013=1890169×13150=6365(D)

二、複選題


解:
ac2b=ab2cacc22bc=abb22bcacc2=abb2b2c2=abac{b=c(1)b+c=aaa+b+c=a2a=12,b+c2a=ac2bb2+bc=a2acc(a+b)=(a+b)(ab){a=b(2)b+c=a(1)(2){a=bc=baa+b+c=bb=1aa+b+c=1,12(BC)


解:
f(x)=x3kx=x(x2k)=0x=k,0,k10|f(x)|dx=|k0f(x)dx|+|1kf(x)dx|=|[14x4k2x2]|k0|+|[14x4k2x2]|1k|=14k2+14(k1)2=14(2(k12)2+12)k=1210|f(x)|dx:1412=18{a=1/2b=1/8(AC)


解:
(A):bnbn1=2an2an1=2anan1=2d⇒<bn>2d(B)×:d>0r=2d>1(C):{b1=2a1=21=2r=2d=2bn>4096b1rn1=22(n1)/2=2(n+1)/2>4096=212n+12>12n>23n=24(D):ni=1ai=2a1+(n1)d2n=2+(n1)/22n=22(n+11)(n8)=0n=88i=1bi=b1b1r81r=222412=(252)(2+1)=30(1+2)(ACD)


解:
(A):(50,M)M=34×50+20=57.5(B):r34=r×σyσxr=34×812=0.5(C)×:(D):σy>σx(ABD)

第二部份:綜合題
一、填充題

解:
(sin2633sin227)(sin293cos2171)=(cos2273(1cos227))(sin293cos29)=(3+4cos227)(sin293(1sin29))=(3+4cos227)(3+4sin29)=cos27(3+4cos227)sin9(3+4sin29)cos27sin9=cos81sin27cos27sin9({cos(3x)=4cos3x3cosxsin(3x)=4sin3x+3sinx)=sin9sin27cos27sin9=tan27=tan(36027)=tan333θ=333


解:
\begin{array}{} & a_2 & = & 2+1=3=a_1+3 \\ & a_3 & = & 3+2\sqrt 4+1=8 = a_2+5 \\  & a_4 & = & 8+2\sqrt 9+1=15 = a_3+7 \\ & \cdots & & \cdots\\ +&a_n &=& a_{n-1}+(2n-1)\\\hline & a_n & = & 3+ 5+7+\cdots + 2n-1 =\sum_{k=2}^n (2k-1)\end{array} \\ \Rightarrow a_{30} =\sum_{k=2}^{30} (2k-1) = 32\times 29-29 = \bbox[red, 2pt]{899}


解:
令g(x)=xf(x)\Rightarrow \cases{g(0)=0\\ g(t)=tf(t)={1\over 2},t=1-2019} \Rightarrow g(t)=a(t-1)(t-2)\cdots (t-2019)+{1\over 2}\\ \Rightarrow g(0)=a \times -2019!+{1\over 2}=0 \Rightarrow a={1\over 2\times 2019!} \Rightarrow g(2020)= a\times 2019!+{1\over 2} ={1\over 2} +{1\over 2}=1 \\ \Rightarrow f(2020)={1\over 2020}\times g(2020) =\bbox[red, 2pt]{1\over 2020}


解:
{1\over 2\times 3\times 4\times 5} +{1\over 3\times 4\times 5\times 6} +{1\over 4\times 5\times 6\times 7} + {1\over 5\times 6\times 7\times 8} + \cdots\\ ={1\over 3}({1\over 2\times 3\times 4} -{1\over 3\times 4\times 5}) +{1\over 3}({1\over 3\times 4\times 5} -{1\over 4\times 5\times 6}) +{1\over 3}({1\over 4\times 5\times 6} -{1\over 5\times 6\times 7}) \\\qquad \quad+{1\over 3}({1\over 5\times 6\times 7} -{1\over 6\times 7\times 8}) +\cdots\\ = {1\over 3}\times {1\over 2\times 3\times 4} = \bbox[red, 2pt]{1\over 72}


解:
A=\begin{bmatrix} 1& 0 \\ -1 & 2\end{bmatrix} \Rightarrow A^2=\begin{bmatrix} 1& 0 \\ -1 & 2\end{bmatrix}\begin{bmatrix} 1& 0 \\ -1 & 2\end{bmatrix} =\begin{bmatrix} 1& 0 \\ -3 & 4\end{bmatrix} \\ \Rightarrow A^4= \begin{bmatrix} 1& 0 \\ -3 & 4\end{bmatrix} \begin{bmatrix} 1& 0 \\ -3 & 4\end{bmatrix} =\begin{bmatrix} 1& 0 \\ -15 & 16\end{bmatrix} \Rightarrow A^8 =\begin{bmatrix} 1& 0 \\ -15 & 16\end{bmatrix} \begin{bmatrix} 1& 0 \\ -15 & 16\end{bmatrix} \\ =\begin{bmatrix} 1& 0 \\ 255 & 256\end{bmatrix} =\begin{bmatrix} 1& 0 \\ 0 & 1\end{bmatrix}+255 \begin{bmatrix} 0& 0 \\ -1 & 1\end{bmatrix} \Rightarrow (a,b)=\bbox[red, 2pt]{(1,255)}


解:
\cases{P(x,-x^2+5x+1) \\ Q(x,-x+6)} \Rightarrow \overline{PQ} =-x^2+5x+1+x-6 =-(x^2-6x+9)+4 \\ =-(x-3)^2+4 \le 4 \Rightarrow 最大值為\bbox[red, 2pt]{4}


解:
\begin{array}{} n & {1\over 2}\log_2 n-1 & [{1\over 2}\log_2 n-1] & 小計\\\hline 1-3 & [-1,0) & -1 & -3\\ 4-15 & [0,1) & 0 & 0\\ 16-63 & [1,2) & 1 & 48 \\ 64-100 & [2,3) & 2 & 74 \\\hdashline & &  & 119\end{array}\Rightarrow \bbox[red, 2pt]{119}


解:
(\sqrt{m+\sqrt{m^2-n}} +\sqrt{m-\sqrt{m^2-n}})^2 =6^2 \Rightarrow 2m+2\sqrt{n}=36 \Rightarrow n=(m-18)^2\\ 由m^2 \ge n \Rightarrow n=(m-18)^2 = m^2-36m+18^2 \Rightarrow -36m+18^2 \le 0 \Rightarrow m\ge 9\\ \Rightarrow \sum n= 9^2+8^2+\cdots +1^2= {9\times 10 \times 19\over 6} =\bbox[red, 2pt]{285}


解:
a_n=a_{n-1}-a_{n-2},n\ge 3\\ \Rightarrow \begin{array}{l} a_1=a_1\\ a_2=a_2\\a_3= a_2-a_1\\ a_4=a_3-a_2= a_2-a_1-a_2=-a_1 \\ a_5=a_4-a_3 =-a_1-(a_2-a_1) =-a_2 \\a_6=a_5-a_4=-a_2-(-a_1) =-a_2+a_1 \\\hdashline a_7 =a_6-a_5=-a_2+a_1-(-a_2)=a_1 \\ a_8=a_7-a_6= a_1-(-a_2+a_1) =a_2 \\ a_9=a_8-a_7=a_2-a_1\\ \cdots\end{array} \Rightarrow \cases{a_m=a_n,\text{if }(m \mod 6)=(n \mod 6)\\ \sum_{k=n}^{n+5} a_k=0,k\ge 1}\\ \cases{\sum_{n=1}^{40}a_n=30 \\ \sum_{n=1}^{80}a_n= 78} \Rightarrow \cases{a_{37}+ a_{38}+a_{39}+a_{40} =30\\ a_{79}+a_{80}=78}  \Rightarrow \cases{a_{1}+ a_{2}+a_{3}+a_{4} =30\\ a_{1}+a_{2}=78} \\ \Rightarrow \cases{a_{1}+ a_{2}+(a_{2}-a_1)+(-a_{1}) =30\\ a_{1}+a_{2}=78} \Rightarrow \cases{2a_{2} -a_{1} =30\\ a_{1}+a_{2}=78} \Rightarrow \cases{a_1=42 \\ a_2=36}\\ \sum_{n=1}^{123}a_n= a_{121}+ a_{122}+a_{123}= a_1+a_2+a_3= 2a_2 = \bbox[red, 2pt]{72}

二、計算證明題


解:
f(x)=x^3-4x^2+2x+4 = (x-2)(x^2-2x-2),因此f(x)=0 \Rightarrow x=0,1\pm \sqrt{3} \\ \Rightarrow \cases{\alpha =1-\sqrt 3\\ \beta =2 \\ \gamma =1+\sqrt 3} \Rightarrow  {1\over x-\alpha}+ {1\over x-\beta} +{1\over x-\gamma} ={ 3x^2-2(\alpha+ \beta +\gamma)x +\alpha\beta+\beta\gamma +\gamma\alpha\over (x-\alpha)(x-\beta)(x-\gamma)} \\= {3x^2-8x+2 \over (x-1+\sqrt 3)(x-2)(x-1-\sqrt 3)}  ={(x-{4+\sqrt{10}\over 3})(x-{4-\sqrt{10}\over 3}) \over (x-1+\sqrt 3)(x-2)(x-1-\sqrt 3)};\\因此 {1\over x-\alpha}+ {1\over x-\beta} +{1\over x-\gamma}>0 \\\Rightarrow (x-{4+\sqrt{10}\over 3})(x-{4-\sqrt{10}\over 3})(x-1+\sqrt 3)(x-2)(x-1-\sqrt 3)>0 \\ \Rightarrow \bbox[red, 2pt]{\cases{x > 1+\sqrt 3\\ 2< x < {4+\sqrt{10}\over 3}\\ 1-\sqrt 3< x <{4-\sqrt{10} \over 3} }}



解:
|z-1-i|-|z+1+i|=2 \Rightarrow |(x-1)+(y-1)i|-|(x+1)+(y+1)i|=2 \\ \Rightarrow (x-1)^2+(y-1)^2 =4+4\sqrt{(x+1)^2+(y+1)^2} +(x+1)^2+(y+1)^2 \\ \Rightarrow -x-y-1=\sqrt{(x+1)^2+(y+1)^2} \Rightarrow (x+y+1)^2=(x+1)^2+(y+1)^2 \\ \Rightarrow x^2+y^2 +2xy+2x+2y+1 =x^2+y^2 +2x+2y+2 \Rightarrow \bbox[red, 2pt]{xy=1/2}


解:
\lim_{n\to \infty}\left(1+{1\over n} \right)^n = \lim_{n\to \infty} 1+{n\over 1!}\cdot {1\over n} +{n(n-1)\over 2!}\cdot {1\over n^2}  +{n(n-1)(n-2)\over 3!}\cdot {1\over n^3} +\cdots \\ = \lim_{n\to \infty} 1+{1\over 1!}+{1\over 2!}(1-{1\over n})+ {1\over 3!}(1-{1\over n})(1-{2\over n})+ \cdots \\ =1+{1\over 1!} +{1\over 2!}+{1\over 3!}+\cdots =\sum_{n=1}^\infty {1\over n!},故得證

-- END   (僅供參考)  --



2 則留言:

  1. 請問計算第二題的最後1行是不是少+1?所以答案是1/2嗎?
    另外,填充第1題有算式嗎?謝謝

    回覆刪除