Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2021年4月27日 星期二

110年板橋高中教甄-數學詳解

新北市立板橋高級中學 110 學年度第一次教師甄選

解答x216y29=1{a=4b=3c=5{F1(5,0)F2(5,0)|¯PF1¯PF2|=82s=PF1F2=¯PF1+¯PF2+10PF1F2=s(s¯PF1)(s¯PF2)(s10)=s(5+12(¯PF2¯PF1)(5+12(¯PF1¯PF2)(s10)=s19(s10)=3s(s10)=r(x)sr(x)=3110slimxr(x)=lims3110s=3
解答


EFGHPGPH=θ¯GEQ滿¯HQ¯GE,{AC:x+21=y32=z+32u=(1,2,2)GE:x23=y+24=z1v=(3,4,1){n=u×v=(10,5,10)cosθ=uv|u||v|=126sinθ=526;{ACM(2,3,3)GEN(2,2,0)MN=(4,5,3)¯AH=MNn=MNn|n|=4515=3{A(4,1,1)AH=nAH:x+42=y+1=z12(2t4,t1,2t+1)¯AH=3{t=1t=1{H1(2,0,3)H2(6,2,1)dist(H1,¯GE)=1526<dist(H2,¯GE){H=H1=(2,0,3)¯HQ=dist(H1,¯GE)¯PH=15/26sinθ=25/265/26=3{¯GH=23492613¯HE=234+92613=23492613×234+92613×3=1352613
解答10=19:110=C101=108:29=C925:56=C654:652=5k=1C11kk=1+10+36+56+35+6=1441210×144=964
解答
解答n34n4n=10k+4n3=(10k+4)3=1000k3+1200k2+480k+644(480k+64){k=1n=14k=6n=6414,264
解答{:R,B,W:10R,10B,10W1R,B,W9R×B×W=(10R)(10B)(10W)R=B=W=5R=5,(B,W)=(1,9),(2,8),(3,7),(4,6)調8B=5W=588×3+1=25
解答

{(|x|1)2+(|y|1)2=1|x|1|y|1


使Lxx=2×2=2=4(π412)=π2;=2(π2)=4πC(22,22)x:2×22π=2πx=2π(4π)=42π2π2

解答
{¯AC=a¯AI=b¯BC=a+b¯BCD使¯CD=aCAICDI(SAS){CAI=CDI=θ¯AI=¯ID=bDBI=DIB=θ/2ABC:A+B+C=1802θ+θ+42=180θ=(18042)/3=46
解答f(x)={x4+2xx0log2(x+1)x>0|f(x)|={x42xx02log2(x+1)x>01a>0limxax>limxlog2(x+1)|f(x)|
解答\cases{f(x)=x^{109}+4x^{104}+1=0的109個根為r_n,n=1,2,\dots,109\\ Q(x)=0的109個根為r_n+{1\over r_n},n=1,2,\dots,109}\\ \Rightarrow \cases{f(x)= a\Pi_{n=1}^{109}(x-r_n),a為常數 \\ Q(x)= b\Pi_{n=1}^{109}(x-r_n-{1\over r_n}),b為常數}\\ 因此{Q(1) \over Q(-1)} ={b\Pi_{n=1}^{109}(1-r_n-{1\over r_n}) \over b\Pi_{n=1}^{109}(-1-r_n-{1\over r_n})}  ={\Pi_{n=1}^{109}(r_n^2-r_n+1) \over \Pi_{n=1}^{109}(r_n^2+r_n+1 )}  \\ ={\Pi_{n=1}^{109}({1+\sqrt 3 i\over 2}-r_n)({1-\sqrt 3i\over 2}-r_n) \over \Pi_{n=1}^{109}({-1+\sqrt 3i\over 2}-r_n)({-1-\sqrt 3i\over 2}-r_n )}  ={{1\over a}f({1+\sqrt 3i\over 2}) \cdot {1\over a}f({1-\sqrt 3i\over 2}) \over {1\over a}f({-1+\sqrt 3i\over 2}) \cdot {1\over a}f({-1-\sqrt 3i\over 2})}\\ ={f(e^{\pi i/3})\cdot f(e^{5\pi i/3}) \over f(e^{2\pi i/3})\cdot f(e^{4\pi i/3})}= {(e^{109\pi i/3}+4e^{104\pi i/3}+1) (e^{545\pi i/3}+4e^{520\pi i/3}+1) \over (e^{218\pi i/3}+4e^{208\pi i/3}+1) (e^{436\pi i/3}+4e^{416\pi i/3}+1)} \\= {(e^{\pi i/3}+4e^{2\pi i/3}+1) (e^{5\pi i/3}+4e^{4\pi i/3}+1) \over (e^{2\pi i/3}+4e^{4\pi i/3}+1) (e^{4\pi i/3}+4e^{2\pi i/3}+1)} ={({5\sqrt 3\over 2}i-{1\over 2})(-{5\sqrt 3\over 2}i-{1\over 2}) \over (-{3\sqrt 3\over 2}i-{3\over 2})({3\sqrt 3\over 2}i-{3\over 2})} ={76/4 \over 36/4} =\bbox[red, 2pt]{19/9}
解答

假設\cases{A:甲抽到鬼牌,乙也抽到鬼牌\\ B:甲抽到鬼牌,乙抽到數字牌\\ C:甲抽到數字牌,乙抽到鬼牌\\ D:甲抽到數字牌,乙也抽到數字牌 }\qquad\qquad, 則各狀態轉換及其機率如上圖;\\甲勝(鬼牌在乙手上)的路徑有五條:\\ (1)P(S1\to S2\to S3\to A) = {36\over 35} \cdot{ 5\over 6} \cdot {16\over 15} \cdot {3\over 4} \cdot {4\over 3} \cdot{1\over 2} ={16\over 35} \\(2)P(S1\to S4 \to S2 \to S3\to A) = {36\over 35} \cdot{ 5\over 36}\cdot {1\over 4} \cdot {16\over 15} \cdot {3\over 4} \cdot {4\over 3} \cdot{1\over 2} ={16\over 35} \\(3)P(S1\to S4\to S2 \to S5\to S3\to A) = {36\over 35} \cdot{ 5\over 36}\cdot{1\over 4} \cdot {16\over 15} \cdot {3\over 16} \cdot {1\over 2}\cdot {4\over 3} \cdot{1\over 2} ={1\over 420} \\(4)P(S1\to S4 \to S5 \to S3\to A) = {36\over 35} \cdot{ 5\over 36} \cdot {3\over 4}\cdot {1\over 2}   \cdot {4\over 3} \cdot{1\over 2} ={1\over 28} \\ (5)P(S1\to S2 \to S5 \to S3\to A) = {36\over 35} \cdot{ 5\over 6} \cdot {16\over 15} \cdot {3\over 16} \cdot {1\over 2}   \cdot {4\over 3} \cdot{1\over 2} ={2\over 35} \\ 以上機率總和即為\bbox[red, 2pt]{4\over 7}\\ 註: P(S1\to S1)= \sum_{k=0}^\infty {1\over 36^k} ={36\over 35}
解答\lim_{n\to\infty} \sum_{k=1}^n {2\over k+n} \ln\left({k+n\over n} \right) =\lim_{n\to\infty} \sum_{k=1}^n {2\over n}\cdot {n\over k+n} \ln\left({k+n\over n} \right) = \int_1^2 {2\over x}\ln x\;dx \\ =\left. \left[(\ln x)^2 \right]\right|_1^2 =\bbox[red, 2pt]{(\ln 2)^2}

 ==== end ====

註: 學校未公布非選的題目

3 則留言:

  1. 請問一下第11題S1機率36/35,S2機率16/15,S3機率4/3是為什麼呢?謝謝

    回覆刪除
    回覆
    1. 停留在S1的機率=原來就在S1+在S1繞一圈+繞二圈+...= P(S1->S1)=∑1/36^k=36/35

      刪除
  2. 第四題:整理成 3*2^x=(y+3)(y-1)即可處理。
    若 3|y, 令 y=3k => 2^x=(k+1)(3k-1) => k+1=2^a, 3k-1=2^b =>3*2^a-2^b=4 => 2^b|4 => ...
    若 3| y-1 同法可處理。

    回覆刪除