110 學年度科技校院四年制與專科學校二年制
統一入學測驗-數學(S)
解答:$$(x+3)(2x-1)(x-2)=0的解為-3,1/2,2 \Rightarrow 三根之和=-3+{1\over 2}+2 = -{1\over 2},故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{A(a,b)在第四象限\\ B(c,d)在第二象限} \qquad \Rightarrow \cases{a \gt 0\\ b\lt 0 \\ c\lt 0 \\ d\gt 0} \Rightarrow \cases{ac \lt 0\\ bd \lt 0} \Rightarrow C(ac,bd)在第三象限,故選\bbox[red, 2pt]{(C)}$$
解答:$${|13-c| \over \sqrt{5^2+12^2}} ={|13-c| \over 13} =2 \Rightarrow c=39(c=-36不合,因為c\ge 0),故選\bbox[red, 2pt]{(D)}$$
解答:$$B在單位圓上\Rightarrow \overline{OB}=1 \Rightarrow \tan \theta ={\overline{BD} \over \overline{OB}} =\overline{BD},故選\bbox[red, 2pt]{(C)}$$
解答:$$\alpha,\beta為x^2-5x+6=0的兩根 \Rightarrow (\alpha,\beta)=(2,3)或(3,2) \Rightarrow (x-\alpha^2)(x-\beta^2) = (x-4)(x-9)\\ = x^2-13x+36,故選\bbox[red, 2pt]{(A)}$$
解答:$$大齒輪周長=2\pi\times 80=160\pi \Rightarrow 160\pi = 25\theta \Rightarrow \theta ={160\over 25}\pi ={32\over 5}\pi,故選\bbox[red, 2pt]{(D)}$$
解答:$$(1\cdot 10+ 2\cdot 20+ 3\cdot 40 + 4\cdot 45 + 5\cdot 35)\div (10+20+40+45+35)\\ =525\div 150 =3.5,故選\bbox[red, 2pt]{(A)}$$
解答:$$公比r={a_2\over a_1} ={a_3\over a_2} \Rightarrow {a+12\over a} ={a+16\over a+12} \Rightarrow (a+12)^2=a(a+16)\\ \Rightarrow 8a+144=0 \Rightarrow a=-18 \Rightarrow a+(a+12)+ (a+16) = 3a+28 = -54+28 =-26\\,故選\bbox[red, 2pt]{(D)}$$
解答:$$C^6_3= 20,故選\bbox[red, 2pt]{(D)}$$
解答:$$兩人都買黑色的機率為{1\over 5}\times {1\over 5} ={1\over 5^2};其它四色也是一樣;\\因此兩人買同色機率為5\times {1\over 5^2}={1\over 5},故選\bbox[red, 2pt]{(A)}$$
解答:$$圓半徑r=\overline{AB} =\sqrt{0+2^2}=2 \Rightarrow 圓方程式: (x+1)^2+(y-1)^2=r^2=4 \\ \Rightarrow x^2+y^2+2x-2y-2=0,故選\bbox[red, 2pt]{(B)}$$
解答:$$兩點\cases{A(a,423)\\ B(b,47)}都在y=3^x上 \Rightarrow \cases{423=3^a\\ 47=3^b} \Rightarrow \cases{\log_3 423 = a\\ \log_3 47 = b} \\ \Rightarrow a-b= \log_3 423 -\log_3 47= \log_3{423\over 47} =\log_3 9=2,故選\bbox[red, 2pt]{(B)}$$
解答:$$y=\log_r x 通過\cases{(a,3)\\ (b,4)\\ P(ab,c)} \Rightarrow \cases{3=\log_r a\\ 4=\log_r b\\ c=\log_{r}ab =\log_r a+\log_r b=3+4=7},故選\bbox[red, 2pt]{(A)}$$
解答:$$剩下八個區位給2人分配,有C^8_2=28種分法;每種分法乙、丙二人可互換\\,因此共有28 \times 2=56種安排方式,故選\bbox[red, 2pt]{(C)}$$
解答:$$由圖形可知:\cases{m_1 \gt 0,b_1 \lt 0\\ m_2 \lt 0,b_2 \gt 0} \Rightarrow \cases{m_1 \gt m_2 \\ b_2 \gt b_1},故選\bbox[red, 2pt]{(D)}$$
解答:$$L左側不含原點,因此平面A即為2x-y+2 \lt 0,將P(-2,k)代入可得-4-k+2 \lt 0 \\ \Rightarrow -2\lt k,故選\bbox[red, 2pt]{(A)}$$
解答:
$$不含坐標軸,共有六個整數解,見上圖;也就是(1,1),(2,1),(3,1),(4,1),(1,2),(2,2),故選\bbox[red, 2pt]{(C)}$$
解答:$$\vec u_i\cdot \vec u_0代表\vec u_i在\vec u_0上的投影長,因此x_1 \gt x_4 \gt x_2\gt x_3,其中x_2,x_3 \lt 0,故選\bbox[red, 2pt]{(C)}$$
解答:
解答:$$\vec u_i\cdot \vec u_0代表\vec u_i在\vec u_0上的投影長,因此x_1 \gt x_4 \gt x_2\gt x_3,其中x_2,x_3 \lt 0,故選\bbox[red, 2pt]{(C)}$$
解答:
$$P(-1,-2) \Rightarrow \cos \theta =-{1\over \sqrt 5} \Rightarrow \sin \theta=-{2\over \sqrt 5} \Rightarrow \cos (90^\circ +\theta)= -\sin \theta ={2\over \sqrt 5},故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{\theta為第二象限角\\ \cos^2\theta ={144\over 169}} \Rightarrow \cos \theta =-\sqrt{144\over 169} =-{12\over 13} \Rightarrow \sin \theta ={5\over 13} \Rightarrow \tan \theta =-{5\over 12},故選\bbox[red, 2pt]{(D)}$$
解答:$$\angle C= 180^\circ -\angle A-\angle B=180^\circ -105^\circ - 45^\circ = 30^\circ \\再由正弦定理:{\overline{AB} \over \sin \angle C}=2R \Rightarrow {5\over \sin 30^\circ} ={5\over 1/2}=10 =2R \Rightarrow R=5,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{圓心(1,2)至L_1距離=2 =半徑\\ 圓心(1,2)至L_2距離=4 \gt 半徑} \Rightarrow \cases{m=1\\ n=0},故選\bbox[red, 2pt]{(B)}$$
解答:$$假設木星至地理的距離a,利用餘弦定理: \cos 120^\circ=-{1\over 2} ={a^2+1^2-5.1^2 \over 2a} \approx {a^2-25\over 2a} \\ \Rightarrow a^2+a-25=0 \Rightarrow a={-1+\sqrt{101} \over 2} \approx {-1+10\over 2}=4.5,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{\theta為第二象限角\\ \cos^2\theta ={144\over 169}} \Rightarrow \cos \theta =-\sqrt{144\over 169} =-{12\over 13} \Rightarrow \sin \theta ={5\over 13} \Rightarrow \tan \theta =-{5\over 12},故選\bbox[red, 2pt]{(D)}$$
解答:$$\angle C= 180^\circ -\angle A-\angle B=180^\circ -105^\circ - 45^\circ = 30^\circ \\再由正弦定理:{\overline{AB} \over \sin \angle C}=2R \Rightarrow {5\over \sin 30^\circ} ={5\over 1/2}=10 =2R \Rightarrow R=5,故選\bbox[red, 2pt]{(B)}$$
解答:$$f(-1)=8 \Rightarrow a+2a+1+1 = 8 \Rightarrow 3a=6 \Rightarrow a=2,故選\bbox[red, 2pt]{(B)}$$
解答:$$假設木星至地理的距離a,利用餘弦定理: \cos 120^\circ=-{1\over 2} ={a^2+1^2-5.1^2 \over 2a} \approx {a^2-25\over 2a} \\ \Rightarrow a^2+a-25=0 \Rightarrow a={-1+\sqrt{101} \over 2} \approx {-1+10\over 2}=4.5,故選\bbox[red, 2pt]{(A)}$$
=============== END =====================
解題僅供參考,其它統測試題及詳解
沒有留言:
張貼留言