Loading [MathJax]/jax/output/HTML-CSS/jax.js

2021年5月24日 星期一

110年台中女中教甄-數學詳解

臺中市立臺中女子高級中等學校 110 學年度第一次教師甄選

一、 填充題:每格 4 分,全對才給分

解答x=abc{a=b=c={M(x):a,b,cm(x):a,b,cH(x)=M(x)m(x)x使x=H(x)a,b,cH(x)xx=692H(693)=963369=594x=594H(594)=954459=495x=495H(495)=954459=495495:Youtube
解答f(x)=3xf(t+16)f(t16)=23t+163t16=2(3t+16)3=(2+3t16)3t+16=8+(t16)+63t16(2+3t16)63(t16)2+123t1624=03t16=51t=(51)3+16=8516+16=85
解答x22x+1262+x212x+3922=(x1)2+1162+(x6)2+322=¯PA+¯PB,{P(x,0)A(1,1162)B(6,322)PxABx¯PA+¯PB=¯AB¯AB=(61)2+(1162+322)2=25+(32+21)2=25+4=29
解答


195499C95=9126=114


解答Lm(1,2)L:y=m(x1)+2xy=1x(m(x1)+2)=1f(x)=mx2+(2m)x1=0α,β(α>β){P(α,f(α))Q(β,f(β)){α+β=(m2)/mαβ=1/m(αβ)2=(α+β)24αβ=m2+4m2αβ=m2+4m2¯PQ=(αβ)×m2+1=m4+5m2+4m2=5+m2+4m25+4=3(m2+4m22m24m2=4)¯PQ3
解答{z=2eiαω=eiβ{z/ω=2ei(αβ)ω/z=1/2ei(βαzω=2ei(α+β)|z24ω2+7zω|=|(zω)(z/ω4ω/z+7)|=|zω||z/ω4ω/z+7|=2|2ei(αβ)2ei(βα)+7|=2|7+4sin(αβ)i|{M=272+42=265m=272+02=14(M,m)=(265,14)

解答
ABC{A(272,0,0)B(272,0,0)C(0,2723,0)G(0,923,0)DEFG(0,923,141)F=G+(0,53,0)=(0,32,141)¯AF=(272)2+(32)2+141=183+141=324=18解答g(x)=x1f(t)dt=112x32x2+px+qg(x)=f(x)=14x24x+pf(x)=12x4y=mxf(x)mx=14x24x+p14x2(4+m)x+p=0:(m+4)2p=0m2+8m+16p=0=16p=1p=17g(1)=11f(t)dt=0=1122+p+q=2312+17+qq=18112(p,q)=(17,18112)

解答:¯AE¯EBׯBC¯CDׯDO¯OA=112×21ׯDO¯OA=1¯DO=¯OA:ABAC=6AOEC=3AD(CE)=32(AB+AC)(13CB+23CA)=32(AB+AC)(13BC+23AC)=32(AB+AC)(13(AB+AC)+23AC)=32(AB+AC)(13AB+AC)=12¯AB2+ABAC+32¯AC212¯AB2=32¯AC2¯AB¯AC=3    

解答

{R=[cosαsinαsinαcosα]tanα=3/4R=[4/53/53/54/5]{LS=[cos2βsin2βsin2βcos2β]L:y=5xtanβ=5tan2β=5+5152=512S=[12/135/135/1312/13]{LS=[cos2γsin2γsin2γcos2γ]L:y=mxtanγ=mtan2γ=2m/(1m2):SR=SS=SR1=[12/135/135/1312/13][4/53/53/54/5]=[63/6516/6516/6563/65]=[cos2γsin2γsin2γcos2γ]{cos2γ=63/65sin2γ=16/65tan2γ=16/63=2m/(1m2)8m2+63m8=0(8m1)(m+8)=0m=8(1/8,PQL)
解答
BPQC=2APQAPQABC=APQAPQ+2APQ=13=ab23ab=2BPQC=2(APQ)¯PQ+9(a+b)=2(a+b+¯PQ)¯PQ=93(a+b)(1){cosA=22+3242223=14cosA=a2+b2¯PQ22ab=a2+b2¯PQ24¯PQ2=a2+b2+1=(a+b)22ab+1=(a+b)23¯PQ=(a+b)23(2)(1)(2)93x=x234x227x+42=0,x=a+bx=a+b=(2757)/8(2)¯PQ=594545764=35798{a+b=(2757)/82.43a+b2ab=222.8
解答
{L1:3x+2y=7L2:x2y=13G(5,4)ABC{BL1CL2{B(s,(73s)/2)C(2t+13,t),s,tRG=(A+B+C)/3{5=(1+s+2t+13)/34=(2+(73s)/2+t)/3{s=19/2t=13/4C(13/2+13,13/4)=(132,134)


解答
{¯MN¯AIMIM=θ{MIM=¯MI¯MIsinθ÷2NIN=¯NI¯NIsinθ÷2NIN>MIMAMN<AMN(¯IM=¯IN)¯AI¯MNAMN

{¯AB=6¯AC=9¯BC=12cosA=62+92122269=14sinA=154tanA2=sinA1+cosA=153IAI=96+9+12AB+66+9+12AC=13AB+29AC|AI|2=(13AB+29AC)(13AB+29AC)=19¯AB2+481¯AC2+427ABAC=1936+48181+427|AB||AC|cosA=4+4+42769(14)=6AMN=¯AIׯIN=¯AIׯAItanA2=6153=215


解答
{D(0,0)B(1,0)C(1,0)I(0,r)IBD=θ{tanθ=rH(0,2r)tan2θ=2r1r2A(0,2r1r2){BH=(1,2r)¯AC=(1,2rr21)HBHAC=01+4r2r21=5r21r21=0r2=15¯AD¯HD=2r/(1r2)2r=11r2=111/5=54

解答OPy=7x300{P(a,7a)¯OP=300P(302,2102)20/西45tP(302102t,2102+102t)10t60+10t¯OPr()(302102t)2+(10t2102)2(60+10t)2t236t+2880(t24)(t12)012t242412=12
解答6x+2y3xx2+y2x2=06x+2y=3x1+y2x2=3x(1+y2x2)3x+2y=3xy2x21+23t=t2,where t=y/xt20:t2t2t1+23tt=0[0,1)[0,1)[1,53)t2<1+23t1[1,2)[1,2)[53,3+223)t2<1+23t2[2,3)[2,3)[3+223,3+233)t=3/23[3,4)[3,2)[3+233,73)t2>1+23tt2>1+23tt=32=yx(x,y)=(2k,3k),1k1616
解答3m+4n{m=2+4++2m=m2+mn=1+3++2n1=n2m2+m+n22025(m+12)2+n2202514(1)西((m+12)2+n2)(32+42)(3(m+12)+4n)2202514×25(3m+4n+32)2225.X3m+4n+323m+4n<2243m+4n=223
解答()E1=25×1()+35(E1+1)()E1=52()E2=35×1()+25(E2+1)()E2=53=35(E1+1)+25(E2+1)=196

二、計算證明題:請寫出詳細計算與證明過程,否則不予給分, 共 24 分。


解答ab+c+bc+a+ca+b=(a+b+cb+c1)+(a+b+cc+a1)+(a+b+ca+b1)=(a+b+c)(1b+c+1c+a+1a+b)3=12((b+c)+(c+a)+(a+b))(1b+c+1c+a+1a+b)312(1+1+1)23=923=32ab+c+bc+a+ca+b32

解答
y=f(x)=x3f(x)=3x2{P(a,a3)Q(b,b3)a>0PQ=a3b3ab=f(b)a2+ab+b2=3b2a2+ab2b2=0(ab)(a+2b)=0a=2b(PQab){PAm1=f(a)=3a2=12b2PBm2=f(b)=3b2tanAPB=m1m21+m1m2=9b21+36b4=91/b2+36b21b2+36b221b236b2=12tanθ=912=34

解答
(1){a1=4a2=5an=a2n11an2,n3a3=5214=6{a2n=an+1an1+1a2n1=anan2+1a2na2n1=an+1an1anan2a2n+anan2=a2n1+an1an+1an(an+an2)=an1(an1+an+1)an+1+an1an=an+an2an1==a3+a1a2=6+45=2an+1+an1an=2an+1+an1=2anan+1an=anan1anan1=an1an2==a2a1=1an=1an=a1+(n1)d=4+n1=n+3an=n+3,nN(2){1n=2n+n2n+n1=2(nn1)1n=2n+n2n+1+n=2(n+1n)2(n+1n)1n2(nn1)1an=1n+32(n+4n+3)1an2(n+3n+2)22021n=1(n+4n+3)2021n=11an22021n=1(n+3n+2)2(20254)2021n=11an2(20243)2(452)2021n=11an862021n=11an2021n=11an86

========================== END ====================================
解題僅供參考,其它教甄試題及詳解



沒有留言:

張貼留言