Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2021年5月15日 星期六

110年北科附工教甄-數學詳解

 國立臺北科大附屬桃園農工 110 學年度第一次教師甄試

解答
(1){logcb=xlogca=ylogcblogca=xylogcbxylogca=0logcbax/y=0b=ax/ylogab=xylogab=logcblogca(2)y=f(x)=loga(x2)+x328=0loga(x2)=28x3{y=g(x)=loga(x2)y=h(x)=28x3x[3,a+2]h(x)=3x2<0,xR{y=g(x)y=h(x){f(3)=0+3328=1<0f(a+2)=1+(a+2)328>0(a>3)(3){a,bNa+b=12a1b1(a,b)=(2,10),(3,9),,(10,2)11logbc=loga4abc2101003916488664932(a,b,c)=(2,10,100),(3,9,16),(4,8,8),(6,6,4),(9,3,2)
解答
(1)Cn+13=Cn2+Cn3=Cn2+(Cn12+Cn13)=Cn2+Cn12+(Cn22+Cn23)==Cn2+Cn12+Cn22++C22(2)Cn2=n(n1)2n2=2Cn2+nnk=2k2=nk=2(2Ck2+k)=2nk=2Ck2+nk=2k=2Cn+13+(n1)(n+2)2=(n1)n(n+1)3+(n1)(n+2)2=2n3+3n2+n66nk=1k2=2n3+3n2+n66+1=2n3+3n2+n6=n(n+1)(2n+1)6
解答(1+x)n=Cn0+Cn1x+Cn2x2++Cnnxn01(1+x)ndx=01Cn0+Cn1x+Cn2x2++Cnnxndx[1n+1(1+x)n+1]|01=[Cn0x+12Cn1x2+13Cn2x3++1n+1Cnnxn+1]|011n+1=0(Cn0+12Cn113Cn2++1n+1(1)n+1Cnn)Cn012Cn1+13Cn2++1n+1(1)nCnn=1n+1,
解答
(1)((a2a+b)2+(b2b+c)2+(c2c+a)2)((2a+b)2+(2b+c)2+(2c+a)2)(a+b+c)2(a22a+b+b22b+c+c22c+a)(3(a+b+c))(a+b+c)2a22a+b+b22b+c+c22c+aa+b+c3(2):{r31+r32+r3333r31r32r33=3r1r2r3(1)(r1r2)3+(r2r3)3+(r3r1)333(r1r2)3(r2r3)3(r3r1)3=3r21r22r23(2){r1=a2/a1r2=b2/b1r3=c2/c1{(a31+a32)(b31+b32)(c31+c32)=a31b31c31(1+r31)(1+r32)(1+r33)(a1b1c1+a2b2c2)3=a31b31c31(1+r1r2r3)3(1+r31)(1+r32)(1+r33)=1+(r31+r32+r33)+((r1r2)3+(r2r3)3+(r3r1)3)+r31r32r331+3r1r2r3+3r21r22r23+r31r32r33=(1+r1r2r3)3((1),(2))(1+r31)(1+r32)(1+r33)(1+r1r2r3)3(a31+a32)(b31+b32)(c31+c32)(a1b1c1+a2b2c2)3
解答


cosθ=|a|2+|b|2|c|22|a||b||c|2=|a|2+|b|22|a||b|cosθ(1)c=ab|c|2=(ab)(ab)=|a|2+|b|22abab=|a|2+|b|2|c|22(2)(1)(2)ab=|a||b|cosθ
解答{ba+ab=a2+b2ab=4cosCcosC=a2+b24abcosC=a2+b2c22aba2+b24ab=a2+b2c22aba2+b2=2c2(1)tanC(cotA+cotB)=sinCcosC(cosAsinA+cosBsinB)=cosAcosCsinCsinA+cosBcosCsinCsinB=(b2+c2a22bc2aba2+b2c2)ca+(a2+c2b22ac2aba2+b2c2)cb=b2+c2a2a2+b2c2+a2+c2b2a2+b2c2=2c2a2+b2c2=2c22c2c2((1))=2
解答
(1)AB=IB(AB)=BIBAB=BBABB=0(BAI)B=0BA=I(B=0n,ABI)(2)[120100230010012001]2r1+r2[120100010210012001]2r2+r1,r2+r3[100320010210002211]r2,r3/2[10032001021000111/21/2]A1=[32021011/21/2]
解答nxlim
解答f(x)= [\sin(x^2+1)]^x = e^{x\log \sin(x^2+1)} \\\Rightarrow f'(x) = (\log \sin(x^2+1) +{ 2x^2\cos(x^2+1)\over \sin(x^2+1)}) e^{x\log \sin(x^2+1)} \\ =  \bbox[red, 2pt]{(\log \sin(x^2+1) + 2x^2\cot(x^2+1) ) [\sin(x^2+1)]^x}
解答令u^2=1+x^3 \Rightarrow x=(u^2-1)^{1/3} \Rightarrow dx = {2\over 3}u(u^2-1)^{-2/3}du \\ \Rightarrow \int {x^5 \over \sqrt{1+x^3}}\;dx = \int {(u^2-1)^{5/3} \over u} \cdot {2\over 3}u(u^2-1)^{-2/3}du =\int {2\over 3}(u^2-1)\;du \\ ={2\over 3}({1\over 3}u^3-u)+C = \bbox[red, 2pt]{{2\over 9}(1+x^3)^{3/2}-{2\over 3}(1+x^2)^{1/2}+C,C為常數}
解答\int {\cos x\over e^x}dx = e^{-x}\sin x+ \int e^{-x}\sin x\;dx\left(\because\cases{u=e^{-x}\\ dv = \cos xdx} \Rightarrow \cases{du=-e^{-x} dx\\ v=\sin x} \right) \\ =e^{-x}\sin x-e^{-x}\cos x-\int e^{-x} \cos x \;dx \left(\because\cases{u=e^{-x}\\ dv = \sin xdx} \Rightarrow \cases{du=-e^{-x} dx\\ v=-\cos x} \right)  \\ \Rightarrow 2\int e^{-x}\cos x\;dx =e^{-x}\sin x-e^{-x}\cos x \Rightarrow \int e^{-x}\cos x\;dx = \bbox[red, 2pt]{{\sin x-\cos x\over 2e^x}+C,C為常數}

=========== END ===============

學校未公布答案,解題僅供參考,其它教甄試題及詳解

沒有留言:

張貼留言