國立臺北科大附屬桃園農工 110 學年度第一次教師甄試
解答:(1)令{logcb=xlogca=y⇒logcblogca=xy⇒logcb−xylogca=0⇒logcbax/y=0⇒b=ax/y⇒logab=xy⇒logab=logcblogca,故得證(2)y=f(x)=loga(x−2)+x3−28=0⇒loga(x−2)=28−x3其解個數相當於兩圖形{y=g(x)=loga(x−2)y=h(x)=28−x3的交點數,其中x∈[3,a+2];而h′(x)=−3x2<0,∀x∈R,因此{y=g(x)為遞增y=h(x)為遞減又{f(3)=0+33−28=−1<0f(a+2)=1+(a+2)3−28>0(∵a>3),因此有一交點,也僅有一個交點。(3){a,b∈Na+b=12a≠1b≠1⇒(a,b)=(2,10),(3,9),…,(10,2),11種可能再加上logbc=loga4⇒abc2101003916488664932即(a,b,c)=(2,10,100),(3,9,16),(4,8,8),(6,6,4),(9,3,2)
解答:
解答:
(1)Cn+13=Cn2+Cn3=Cn2+(Cn−12+Cn−13)=Cn2+Cn−12+(Cn−22+Cn−23)=⋯=Cn2+Cn−12+Cn−22+⋯+C22,故得證(2)Cn2=n(n−1)2⇒n2=2Cn2+n⇒n∑k=2k2=n∑k=2(2Ck2+k)=2n∑k=2Ck2+n∑k=2k=2Cn+13+(n−1)(n+2)2=(n−1)n(n+1)3+(n−1)(n+2)2=2n3+3n2+n−66⇒n∑k=1k2=2n3+3n2+n−66+1=2n3+3n2+n6=n(n+1)(2n+1)6,故得證
解答:(1+x)n=Cn0+Cn1x+Cn2x2+⋯+Cnnxn⇒∫0−1(1+x)ndx=∫0−1Cn0+Cn1x+Cn2x2+⋯+Cnnxndx⇒[1n+1(1+x)n+1]|0−1=[Cn0x+12Cn1x2+13Cn2x3+⋯+1n+1Cnnxn+1]|0−1⇒1n+1=0−(−Cn0+12Cn1−13Cn2+⋯+1n+1(−1)n+1Cnn)⇒Cn0−12Cn1+13Cn2+⋯+1n+1(−1)nCnn=1n+1,故得證
解答:
解答:(1+x)n=Cn0+Cn1x+Cn2x2+⋯+Cnnxn⇒∫0−1(1+x)ndx=∫0−1Cn0+Cn1x+Cn2x2+⋯+Cnnxndx⇒[1n+1(1+x)n+1]|0−1=[Cn0x+12Cn1x2+13Cn2x3+⋯+1n+1Cnnxn+1]|0−1⇒1n+1=0−(−Cn0+12Cn1−13Cn2+⋯+1n+1(−1)n+1Cnn)⇒Cn0−12Cn1+13Cn2+⋯+1n+1(−1)nCnn=1n+1,故得證
解答:
(1)((a√2a+b)2+(b√2b+c)2+(c√2c+a)2)((√2a+b)2+(√2b+c)2+(√2c+a)2)≥(a+b+c)2⇒(a22a+b+b22b+c+c22c+a)(3(a+b+c))≥(a+b+c)2⇒a22a+b+b22b+c+c22c+a≥a+b+c3,故得證(2)算幾不等式:{r31+r32+r33≥33√r31r32r33=3r1r2r3⋯(1)(r1r2)3+(r2r3)3+(r3r1)3≥33√(r1r2)3(r2r3)3(r3r1)3=3r21r22r23⋯(2)令{r1=a2/a1r2=b2/b1r3=c2/c1,則{(a31+a32)(b31+b32)(c31+c32)=a31b31c31(1+r31)(1+r32)(1+r33)(a1b1c1+a2b2c2)3=a31b31c31(1+r1r2r3)3由於(1+r31)(1+r32)(1+r33)=1+(r31+r32+r33)+((r1r2)3+(r2r3)3+(r3r1)3)+r31r32r33≥1+3r1r2r3+3r21r22r23+r31r32r33=(1+r1r2r3)3(將(1),(2)代入)⇒因此(1+r31)(1+r32)(1+r33)≥(1+r1r2r3)3也就是(a31+a32)(b31+b32)(c31+c32)≥(a1b1c1+a2b2c2)3,故得證
cosθ=|→a|2+|→b|2−|→c|22|→a||→b|⇒|→c|2=|→a|2+|→b|2−2|→a||→b|cosθ⋯(1)→c=→a−→b⇒|→c|2=(→a−→b)⋅(→a−→b)=|→a|2+|→b|2−2→a⋅→b⇒→a⋅→b=|→a|2+|→b|2−|→c|22⋯(2)將(1)代入(2)⇒→a⋅→b=|→a||→b|cosθ,故得證
解答:{ba+ab=a2+b2ab=4cosC⇒cosC=a2+b24abcosC=a2+b2−c22ab⇒a2+b24ab=a2+b2−c22ab⇒a2+b2=2c2⋯(1)tanC(cotA+cotB)=sinCcosC(cosAsinA+cosBsinB)=cosAcosC⋅sinCsinA+cosBcosC⋅sinCsinB=(b2+c2−a22bc⋅2aba2+b2−c2)⋅ca+(a2+c2−b22ac⋅2aba2+b2−c2)⋅cb=b2+c2−a2a2+b2−c2+a2+c2−b2a2+b2−c2=2c2a2+b2−c2=2c22c2−c2((1)代入)=2
解答:
解答:{ba+ab=a2+b2ab=4cosC⇒cosC=a2+b24abcosC=a2+b2−c22ab⇒a2+b24ab=a2+b2−c22ab⇒a2+b2=2c2⋯(1)tanC(cotA+cotB)=sinCcosC(cosAsinA+cosBsinB)=cosAcosC⋅sinCsinA+cosBcosC⋅sinCsinB=(b2+c2−a22bc⋅2aba2+b2−c2)⋅ca+(a2+c2−b22ac⋅2aba2+b2−c2)⋅cb=b2+c2−a2a2+b2−c2+a2+c2−b2a2+b2−c2=2c2a2+b2−c2=2c22c2−c2((1)代入)=2
解答:
(1)AB=I⇒B(AB)=BI⇒BAB=B⇒BAB−B=0⇒(BA−I)B=0⇒BA=I(若B=0n,則AB≠I),故得證(2)[120100230010012001]−2r1+r2→[1201000−10−210012001]2r2+r1,r2+r3→[100−3200−10−210002−211]−r2,r3/2→[100−3200102−10001−11/21/2]⇒A−1=[−3202−10−11/21/2]
解答:題目的n應該是x由於limx→0+xlog(sinx)=limx→0+log(sinx)1/x=limx→0+(log(sinx))′(1/x)′=limx→0+−x2cosxsinx=limx→0+(−x)⋅limx→0+xtanx=0⋅1=0因此limx→0+(sinx)x=limx→0+exlogsinx=e0=1
解答:f(x)=[sin(x2+1)]x=exlogsin(x2+1)⇒f′(x)=(logsin(x2+1)+2x2cos(x2+1)sin(x2+1))exlogsin(x2+1)=(logsin(x2+1)+2x2cot(x2+1))[sin(x2+1)]x
解答:令u2=1+x3⇒x=(u2−1)1/3⇒dx=23u(u2−1)−2/3du⇒∫x5√1+x3dx=∫(u2−1)5/3u⋅23u(u2−1)−2/3du=∫23(u2−1)du=23(13u3−u)+C=29(1+x3)3/2−23(1+x2)1/2+C,C為常數
解答:∫cosxexdx=e−xsinx+∫e−xsinxdx(∵{u=e−xdv=cosxdx⇒{du=−e−xdxv=sinx)=e−xsinx−e−xcosx−∫e−xcosxdx(∵{u=e−xdv=sinxdx⇒{du=−e−xdxv=−cosx)⇒2∫e−xcosxdx=e−xsinx−e−xcosx⇒∫e−xcosxdx=sinx−cosx2ex+C,C為常數
解答:題目的n應該是x由於limx→0+xlog(sinx)=limx→0+log(sinx)1/x=limx→0+(log(sinx))′(1/x)′=limx→0+−x2cosxsinx=limx→0+(−x)⋅limx→0+xtanx=0⋅1=0因此limx→0+(sinx)x=limx→0+exlogsinx=e0=1
解答:f(x)=[sin(x2+1)]x=exlogsin(x2+1)⇒f′(x)=(logsin(x2+1)+2x2cos(x2+1)sin(x2+1))exlogsin(x2+1)=(logsin(x2+1)+2x2cot(x2+1))[sin(x2+1)]x
解答:令u2=1+x3⇒x=(u2−1)1/3⇒dx=23u(u2−1)−2/3du⇒∫x5√1+x3dx=∫(u2−1)5/3u⋅23u(u2−1)−2/3du=∫23(u2−1)du=23(13u3−u)+C=29(1+x3)3/2−23(1+x2)1/2+C,C為常數
解答:∫cosxexdx=e−xsinx+∫e−xsinxdx(∵{u=e−xdv=cosxdx⇒{du=−e−xdxv=sinx)=e−xsinx−e−xcosx−∫e−xcosxdx(∵{u=e−xdv=sinxdx⇒{du=−e−xdxv=−cosx)⇒2∫e−xcosxdx=e−xsinx−e−xcosx⇒∫e−xcosxdx=sinx−cosx2ex+C,C為常數
=========== END ===============
學校未公布答案,解題僅供參考,其它教甄試題及詳解
沒有留言:
張貼留言