Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2021年5月11日 星期二

110年台北市立高中聯合教甄-數學詳解

臺北市110學年度市立普通型高級中等學校正式教師聯合甄選

壹、 多選題

解答(A):2,2,2,01(B)::(C)×:an={n,n12n,n{n=1ann=1a2n=122+124+=13(D)×:an={13n1nn1n1n{n=1an=1/3+1/33+=3/8n=1a2n=1+1/3+1/5(E)×:(D)(AB)

解答{ω1=z3z2zz2=zω2=z3zz2z=z+1ω3=zz3z2z3=1+1/z(A)×:z=2eiπ{ω1=2ω2=1ω3=1/2Re(ωi)0(B):z=2ei2π/3ω2=z+1=3iRe(ω2)=0(C):z=2ei3π/2ω1=z=2iRe(ω1)=0(D):z=2ei4π/3ω3=1+1/z=3iRe(ω3)=0(E)×:z=2ei5π/3{ω1=1+3iω2=23iω3=2+3iRe(ωi)0(BCD)
解答(A):f(x)=lnxf(x)=1/xf(e)=1/e=1/e(B)×:AQe(e)AQ:y1=e(xe)(C):QAQQ(t,1e(te)),¯AQ=Qx(te)2+(e(te))2=(1e(te))2(te)2=12e(te)t=1+e2(:1+e2!!)Q(1+e2,1e(1+e2e))y=12(xe)2+12(D):(E):¯QBxB(1+e2,0)(:(1+e2,0))(BCD)
解答{x1y1x+2y11{A(1,1)B(1,5)C(9,1){P(A)=1a+1bP(B)=1a+5bP(C)=9a+1b(A)×:a2b>012ba12ba(B):a2b>00<1a12b(1a+5b)(9a+1b)=4b8a4b41b=01a+5b(C)×:9a+1b(B)(D)×:1a+5b=5a+bab=15a+b=ab10b+b=2b2(a=2b)b(2b11)=0b=11/2a=115a+b=55+11/2=601260(E):a2b>0a=2b(BE)
解答
10(x(x))dx+41x(x2)dx=102xdx+41xx+2dx=[43x3/2]|10+[23x3/212x2+2x]|41=43+196=92
解答{a=310+xb=33xa3+b3=10+x3x=7:a2+b2=ab+7a2ab+b2=7(a+b)(a2ab+b2)=7(a+b)a3+b3=7(a+b)7=7(a+b)a+b=1(a+b)3=1a3+b3+3ab(a+b)=17+3ab=1ab=23(10+x)(3x)=2(x+10)(x+3)=8x2+13x+22=0(x+11)(x+2)=0x=2,11
解答4a3aaaa:3bbcbbc361c18;3bccbcc361b1836123612=24:bccbcbbcc:abacacabababcacaababaca,cababcaca4×3=12
解答g(x)=xf(x)1g(1)=g(2)==g(11)=01,2,,11g(x)=011g(x)=a(x1)(x2)(x11)f(x)=g(x)+1x=a(x1)(x2)(x11)+1x{f(x)10g(x)11xa(x1)(x2)(x11)+111!a+1=0a=111!f(12)=111!11!+112=212=16
解答1110:{A={6k,k=118}B={6k+1,k=018}C={6k+2,k=018}D={6k+3,k=017}E={6k+4,k=017}F={6k+5,k=017}{ABFFBCEECDBCAD119+19+1+1=40
解答
y2=8xxOABxABx{A(2t2,4t),t>0B(2t2,4t)POAB{AFm1=4t/(2t22)BFm2=4t/(2t22)¯OAA(t2,2t)¯OBB(t2,2t){PA:y=m2(xt2)+2tPB:y=m1(xt2)2tm2(xt2)+2t=m1(xt2)2txt2=4tm1m2=2t222x=2t21P(2t21,0)=¯OP=¯AP(2t21)2=1+16t24t2(t25)=0t=5P(251,0)=(9,0)
解答x10+(nx1)10=0(nx1x)10=1(n1x)10=eiπn1x=ω=e2k+110πi,k=091x=nω1xˉx=(nω)(nˉω)=n2+1n(ω+ˉω)5k=11zkˉzk=5(n2+1)n9k=0e2k+110πi=5(n2+1)0=5n2+5
解答

a{¯DF=asin72¯AG=acos54=asin36DEBABE=¯DF¯AG=asin72asin36=2asin36cos36asin36=2cos36DEB=2cos36ABEABE=DEB+ABE+BCDABE=ABE(2cos36+1+1)ABE=2+2cos36=2+25+14=5+52

解答:A,B,C,D,EA:AAAA=3/35=1/34P(1)=1=C51134P(2)=2=C52134P(3)=3=C53134P(4)=4=C54134()=1344k=1C5k=1027=1+()EX=1027+(11027)(EX+1)1027EX=1EX=2710
解答{L1:y=x+2021L2:y=2x+110ABC;{L1:y=xL2:y=2x{A(a,a)B(b,2b)P=L1L2=(0,0)P=(A+B+C)/3C(ab,a2b){CA=(2a+b,2a+2b)CB=(a+2b,a+4b){¯AB=60(ab)2+(a2b)2=602C=90CACB=0(2a+b)(a+2b)+(2a+2b)(a+4b)=0{2a2+5b2=3600+6ab2a2+5b2=15ab/232ab=3600ab=8003ABC=PAB+PBC+PCA=12(
解答
令\cases{\overline{AD}=a \\ \angle DFB=\theta} \Rightarrow \cases{\overline{DB}=1-a\\ \overline{DF}=a},正弦定理:{\overline{DF} \over \sin \angle B} ={\overline{DB}\over \sin \angle DFB} \Rightarrow {a \over \sin 60^\circ} ={1-a\over \sin \theta} \\ \Rightarrow {1\over a}-1= {\sin \theta \over \sin 60^\circ} \Rightarrow a={\sqrt 3\over 2\sin \theta+\sqrt 3} \Rightarrow \theta=90^\circ 時,a有最小值{\sqrt 3\over 2+\sqrt 3} = \bbox[red, 2pt]{2\sqrt 3-3}
解答
(1)令x=\sin\theta ,則dx = \cos \theta d\theta \Rightarrow a_n=\int_0^1 (1-x^2)^{n/2} \;dx = \int_0^{\pi/2} (\cos^2\theta)^{n/2}\cdot \cos \theta \;d\theta \\ =\int_0^{\pi/2} \cos ^{n+1}\theta \;d\theta = \left.\left[ \sin\theta \cos^n\theta\right] \right|_0^{\pi/2} +n\int_0^{\pi/2} \sin^2\theta \cos^{n-1}\theta \;d\theta \\ =0+n\int_0^{\pi/2} (1-\cos^2\theta) \cos^{n-1}\theta \;d\theta = n\int_0^{\pi/2} \cos^{n-1}\theta\;d\theta -n\int_0^{\pi/2}\cos^{n+1} \theta \;d\theta \\ =na_{n-2}-na_n \Rightarrow (n+1)a_n= na_{n-2} \Rightarrow a_n={n\over n+1}a_{n-2},\bbox[red, 2pt]{故得證}(2)a_n= \int_0^{\pi/2} \cos^{n+1}\theta \;d\theta \Rightarrow a_n \ge a_{n+1} \Rightarrow {a_{n+2} \over a_n} \le {a_{n+1}\over a_n} \le {a_n\over a_n} =1; \\而{a_{n+2}\over a_n} ={n+2\over n+3}\cdot {a_n\over a_n} ={n+2\over n+3} \Rightarrow \lim_{n \to \infty}{a_{n+2}\over a_n} =\lim_{n \to \infty} {n+2\over n+3}=1\\ 因此1 ={a_{n+2} \over a_n} \le {a_{n+1}\over a_n} \le {a_n\over a_n} =1,由夾擠定理可知 \lim_{n\to \infty}{a_{n+1} \over a_n} = \bbox[red, 2pt]{1}
 =============== END ==================

解題僅供參考,其它教甄試題及詳解

沒有留言:

張貼留言