110年公務人員高等考試三級考試試題
類 科: 電力工程、 電子工程、 電信工程
科 目: 工程數學
甲、 申論題部分: ( 50 分)
解答:(先這樣..待續)
解答:∫φz2dz=∫1+2i0z2dz=[13z3]|1+2i0=−113−23i
解答:撲克牌有四種花色,每一花色有13張版;因此抽3張為同花的次數為4C134,52張牌任抽3張有C523種可能;因此同花的機率為4C133C523=22425
解答:
解答:∫φz2dz=∫1+2i0z2dz=[13z3]|1+2i0=−113−23i
解答:撲克牌有四種花色,每一花色有13張版;因此抽3張為同花的次數為4C134,52張牌任抽3張有C523種可能;因此同花的機率為4C133C523=22425
解答:
(一)A=[5−4412−11124−45]⇒det(A)=−275−192−192+176+240+240=−3(二)det(A−λI)=det([5−λ−4412−11−λ124−45−λ])=0⇒(λ−1)2(λ+3)=0⇒特徵值λ=1,−3;λ1=1⇒(A−λI)X=[4−4412−12124−44][x1x2x3]=0⇒x1+x3=x2⇒取v1=[110],v2=[−101]λ2=−3⇒(A−λI)X=[8−4412−8124−48][x1x2x3]=0⇒{x1=x3x2=3x1⇒取v3=[131]特徵值為λ1=1及λ2=−3,λ1對應的特徵向量為(1,1,0)及(−1,0,1);λ2對應的特徵向量為(1,3,1)(三)取P=[v1v2v3]=[1−11103011]⇒P−1=[3−231−12−11−1]⇒P−1AP=[10001000−3]為一對角矩陣
解答:A,B為兩矩陣⇒trace(AB)=trace(BA)現在Q=P[−200−3]P−1⇒trace(Q)=trace(P[−200−3]P−1)=trace(P−1P[−200−3])=trace([−200−3])=−2−3=−5,故選(A)
解答:{T(x,y,z)=(x−y,z+y)S(x,y,z)=(x+z,x+y)⇒(T+S)(x,y,z)=(2x−y+z,x+2y+z)(A)(T+S)(6,2,−10)=(0,0,0)(B)(T+S)(3,2,−5)=(−1,2)≠(0,0)(C)(T+S)(3,−2,5)=(13,4)≠(0,0)(D)(T+S)(−6,−2,−10)=(−20,−20)≠(0,0),故選(A)
解答:{det(A)=21det(B)=−6det(C)=168⇒det(ABC−1)=det(A)×det(B)det(C)=21×(−6)168=−34=−0.75,故選(B)
解答:{x+y=3x+2y=−1x+3y=2x+4y=7≡[11121314][xy]=[3−127]≡U⋅[xy]=d⇒[ˆx=αˆy=β]=(UTU)−1UTd=[−13/2]⇒{α=−1β=3/2,故選(C)
解答:令T=[abcd],則{T(1,−1)=(3,2)T(1,1)=(1,−5)⇒{a−b=3c−d=2a+b=1c+d=−5⇒{a=2b=−1c=−3/2d=−7/2⇒T=[2−1−3/2−7/2]⇒S=T−1=[7/17−2/17−3/17−4/17]⇒S(2,−7)=[7/17−2/17−3/17−4/17][2−7]=[28/1722/17]=[pq]⇒{p=28/17q=22/17⇒p+q=5017=2.94,故選(A)
解答:{2x1−3x4=15x2+αx3=−7x1+6x2+2x3=13x2−2x3+3x4=−2⇒A=[200−305α0162001−23]聯立方程式無解⇒det(A)=0⇒−33α+90=0⇒α=3011≈2.73,故選(C)
解答:det([−130−2x−1021])=−x+4=0⇒x=4,故選(D)
解答:∫π/30√x′(t)2+y′(t)2+z′(t)2dt=∫π/30√4cos2(t)+4sin2(t)+25dt=∫π/30√29dt=√293π≈5.64,故選(C)
解答:3eiπ/3+5e−iπ/4+2eiπ=3(cosπ3+isinπ3)+5(cos−π4+isin−π4)+2(cosπ+isinπ)=3(12+√32i)+5(√22−√22i)−2=(3+5√22−2)+i(3√3−5√22)⇒{x=3+5√22−2>0y=3√3−5√22<0⇒x⋅y<0,故選(A)
解答:sin(π+i)=−sin(i)=−isinh(1)=−i(e−e−12),沒有實部,故選(D)
解答:f(z)=3⋅4z2+z+2z(4z2−17z+4)=3⋅4z2+z+24z(z−1/4)(z−4)⇒{Res(f,0)=3×12=1.5Res(f,1/4)=3×(−2/3)=−2⇒∮Cf(z)dz=2πi(Res(f,0)+Res(f,1/4))=2πi×(−0.5)=−πi,故選(B)
解答:∫Cf(z)dz=∫1+i0z2+1dz=[13z3+z]|1+i0=13+53i,故選(D)
解答:y=∞∑a=0anxn=a0+a1x+a2x2+⋯+anxn+⋯⇒3xy=3a0x+3a1x2+3a2x3+⋯+3anxn+1+⋯⇒y′=a1+2a2x+3a3x2+⋯+nanxn−1+⋯⇒x2y′=a1x2+2a2x3+3a3x4+⋯+nanxn+1+⋯⇒y″
解答:{dy\over dx} ={3x^2-1\over 2y+5} \Rightarrow \int 2y+5\;dy=\int 3x^2-1\;dx \Rightarrow y^2+5y=x^3-x+C\\ \Rightarrow y^2+5y+{25\over 4}=x^3-x+{25\over 4} +C \Rightarrow (y+{5\over 2})^2=x^3-x+{25\over 4} +C \\ \Rightarrow y=-{5\over 2}\pm \sqrt{x^3-x+{25\over 4} +C}\\又 y(1)=-1 \Rightarrow \sqrt{{25\over 4} +C}= {3\over 2} \Rightarrow C=-4 \Rightarrow y(0)=-{5\over 2}\pm {3\over 2}=-4或-1,故選\bbox[red,2pt]{(C)}
解答:(A)\times: 因為有(y(t))^2項\\ (C)\times: 因為有y(t)\cdot y''(t)項\\ (D)\times: 因為有y(t)^{1/2}項\\,故選\bbox[red,2pt]{(B)}
解答:{dy\over dt}+2y = t\delta(t-2) \Rightarrow \mathcal{L}\{{dy\over dt}\}+2\mathcal{L}\{y\} =\mathcal{L}\{t\delta(t-2)\} \\\Rightarrow sY(s)-y(0)+2Y(s)= (-e^{-2s})'=2e^{-2s} \Rightarrow Y(s)={2e^{-2s}\over s+2},故選\bbox[red,2pt]{(A)}
解答:y={1\over 2}e^{-2x}-{1\over 3}e^{-3x}+ {1\over 6}x+C\Rightarrow y'=-e^{-2x}+e^{-3x}+ {1\over 6} \Rightarrow y''= 2e^{-2x} -3e^{-3x} \\\Rightarrow y''+5y'+6y =x+ 6C+{5\over 6}=x \Rightarrow C=-{5\over 36}\\ 又\cases{y(0)={1\over 6}+C=A\\ y'(0)={1\over 6} =B} \Rightarrow \cases{A={1\over 36}\\ B={1\over 6}\\ C=-{5\over 36}} \Rightarrow A+B+C={1\over 18},故選\bbox[red,2pt]{(C)}
解答:假設\cases{甲勝率:p=3/5\\ 乙勝率:q=1-p=2/5},則第4局打完結束的情形:\cases{第4局打完甲勝:前3局甲2勝1敗\\ 第4局打完乙勝:前3局乙2勝1敗} \\ \Rightarrow \cases{C^3_2p^2q\times p=3\cdot 54/5^4\\ C^3_2q^2p\times q=3\cdot 24/5^4} \Rightarrow 機率為{3(54+24)\over 5^4} = {234\over 625},故選\bbox[red,2pt]{(C)}
解答:P(Y=3\mid X=2)={P_{XY}(2,3)\over P(X=2)} ={P_{XY}(2,3)\over P_{XY}(2,1)+ P_{XY}(2,3)+P_{XY}(2,3)}\\={0.18\over 0.25+0.07+0.18}={0.18\over 0.5} =0.36,故選\bbox[red,2pt]{(B)}
解答:\cases{X\sim N(45,15^2)\\ Y\sim N(65,10^2)} \Rightarrow \cases{(A) Var(Y)=Var(X/3+50)=Var(X)/9=25 \ne 10^2\\ (B)Var(Y)= Var(2X/3+35)=4Var(X)/9=100=10^2\\ (C)Var(Y)= Var(2X/5+47)= 4Var(X)/25= 36\ne 10^2\\ (D)Var(Y)= Var(X+20) = Var(X)=225\ne 10^2}\\,故選\bbox[red,2pt]{(B)}
解答:A,B為兩矩陣⇒trace(AB)=trace(BA)現在Q=P[−200−3]P−1⇒trace(Q)=trace(P[−200−3]P−1)=trace(P−1P[−200−3])=trace([−200−3])=−2−3=−5,故選(A)
解答:{T(x,y,z)=(x−y,z+y)S(x,y,z)=(x+z,x+y)⇒(T+S)(x,y,z)=(2x−y+z,x+2y+z)(A)(T+S)(6,2,−10)=(0,0,0)(B)(T+S)(3,2,−5)=(−1,2)≠(0,0)(C)(T+S)(3,−2,5)=(13,4)≠(0,0)(D)(T+S)(−6,−2,−10)=(−20,−20)≠(0,0),故選(A)
解答:{det(A)=21det(B)=−6det(C)=168⇒det(ABC−1)=det(A)×det(B)det(C)=21×(−6)168=−34=−0.75,故選(B)
解答:{x+y=3x+2y=−1x+3y=2x+4y=7≡[11121314][xy]=[3−127]≡U⋅[xy]=d⇒[ˆx=αˆy=β]=(UTU)−1UTd=[−13/2]⇒{α=−1β=3/2,故選(C)
解答:令T=[abcd],則{T(1,−1)=(3,2)T(1,1)=(1,−5)⇒{a−b=3c−d=2a+b=1c+d=−5⇒{a=2b=−1c=−3/2d=−7/2⇒T=[2−1−3/2−7/2]⇒S=T−1=[7/17−2/17−3/17−4/17]⇒S(2,−7)=[7/17−2/17−3/17−4/17][2−7]=[28/1722/17]=[pq]⇒{p=28/17q=22/17⇒p+q=5017=2.94,故選(A)
解答:{2x1−3x4=15x2+αx3=−7x1+6x2+2x3=13x2−2x3+3x4=−2⇒A=[200−305α0162001−23]聯立方程式無解⇒det(A)=0⇒−33α+90=0⇒α=3011≈2.73,故選(C)
解答:det([−130−2x−1021])=−x+4=0⇒x=4,故選(D)
解答:∫π/30√x′(t)2+y′(t)2+z′(t)2dt=∫π/30√4cos2(t)+4sin2(t)+25dt=∫π/30√29dt=√293π≈5.64,故選(C)
解答:3eiπ/3+5e−iπ/4+2eiπ=3(cosπ3+isinπ3)+5(cos−π4+isin−π4)+2(cosπ+isinπ)=3(12+√32i)+5(√22−√22i)−2=(3+5√22−2)+i(3√3−5√22)⇒{x=3+5√22−2>0y=3√3−5√22<0⇒x⋅y<0,故選(A)
解答:sin(π+i)=−sin(i)=−isinh(1)=−i(e−e−12),沒有實部,故選(D)
解答:f(z)=3⋅4z2+z+2z(4z2−17z+4)=3⋅4z2+z+24z(z−1/4)(z−4)⇒{Res(f,0)=3×12=1.5Res(f,1/4)=3×(−2/3)=−2⇒∮Cf(z)dz=2πi(Res(f,0)+Res(f,1/4))=2πi×(−0.5)=−πi,故選(B)
解答:∫Cf(z)dz=∫1+i0z2+1dz=[13z3+z]|1+i0=13+53i,故選(D)
解答:y=∞∑a=0anxn=a0+a1x+a2x2+⋯+anxn+⋯⇒3xy=3a0x+3a1x2+3a2x3+⋯+3anxn+1+⋯⇒y′=a1+2a2x+3a3x2+⋯+nanxn−1+⋯⇒x2y′=a1x2+2a2x3+3a3x4+⋯+nanxn+1+⋯⇒y″
解答:{dy\over dx} ={3x^2-1\over 2y+5} \Rightarrow \int 2y+5\;dy=\int 3x^2-1\;dx \Rightarrow y^2+5y=x^3-x+C\\ \Rightarrow y^2+5y+{25\over 4}=x^3-x+{25\over 4} +C \Rightarrow (y+{5\over 2})^2=x^3-x+{25\over 4} +C \\ \Rightarrow y=-{5\over 2}\pm \sqrt{x^3-x+{25\over 4} +C}\\又 y(1)=-1 \Rightarrow \sqrt{{25\over 4} +C}= {3\over 2} \Rightarrow C=-4 \Rightarrow y(0)=-{5\over 2}\pm {3\over 2}=-4或-1,故選\bbox[red,2pt]{(C)}
解答:(A)\times: 因為有(y(t))^2項\\ (C)\times: 因為有y(t)\cdot y''(t)項\\ (D)\times: 因為有y(t)^{1/2}項\\,故選\bbox[red,2pt]{(B)}
解答:{dy\over dt}+2y = t\delta(t-2) \Rightarrow \mathcal{L}\{{dy\over dt}\}+2\mathcal{L}\{y\} =\mathcal{L}\{t\delta(t-2)\} \\\Rightarrow sY(s)-y(0)+2Y(s)= (-e^{-2s})'=2e^{-2s} \Rightarrow Y(s)={2e^{-2s}\over s+2},故選\bbox[red,2pt]{(A)}
解答:y={1\over 2}e^{-2x}-{1\over 3}e^{-3x}+ {1\over 6}x+C\Rightarrow y'=-e^{-2x}+e^{-3x}+ {1\over 6} \Rightarrow y''= 2e^{-2x} -3e^{-3x} \\\Rightarrow y''+5y'+6y =x+ 6C+{5\over 6}=x \Rightarrow C=-{5\over 36}\\ 又\cases{y(0)={1\over 6}+C=A\\ y'(0)={1\over 6} =B} \Rightarrow \cases{A={1\over 36}\\ B={1\over 6}\\ C=-{5\over 36}} \Rightarrow A+B+C={1\over 18},故選\bbox[red,2pt]{(C)}
解答:假設\cases{甲勝率:p=3/5\\ 乙勝率:q=1-p=2/5},則第4局打完結束的情形:\cases{第4局打完甲勝:前3局甲2勝1敗\\ 第4局打完乙勝:前3局乙2勝1敗} \\ \Rightarrow \cases{C^3_2p^2q\times p=3\cdot 54/5^4\\ C^3_2q^2p\times q=3\cdot 24/5^4} \Rightarrow 機率為{3(54+24)\over 5^4} = {234\over 625},故選\bbox[red,2pt]{(C)}
解答:P(Y=3\mid X=2)={P_{XY}(2,3)\over P(X=2)} ={P_{XY}(2,3)\over P_{XY}(2,1)+ P_{XY}(2,3)+P_{XY}(2,3)}\\={0.18\over 0.25+0.07+0.18}={0.18\over 0.5} =0.36,故選\bbox[red,2pt]{(B)}
解答:\cases{X\sim N(45,15^2)\\ Y\sim N(65,10^2)} \Rightarrow \cases{(A) Var(Y)=Var(X/3+50)=Var(X)/9=25 \ne 10^2\\ (B)Var(Y)= Var(2X/3+35)=4Var(X)/9=100=10^2\\ (C)Var(Y)= Var(2X/5+47)= 4Var(X)/25= 36\ne 10^2\\ (D)Var(Y)= Var(X+20) = Var(X)=225\ne 10^2}\\,故選\bbox[red,2pt]{(B)}
======================= END =======================
第1題未完.....
選擇第11題 3*(-8/3)=-8才對
回覆刪除己修訂,謝謝提醒! 應該是3*(-2/3)=-2才對
刪除第一題在沒有特定要求解法下,可以採用級數解。
回覆刪除只是覺得考這種題目的意思....不要太早交卷?
刪除第一題只想得到級數解,但他又沒提示真的很機車...
回覆刪除我用級數算了一遍, 答案「不漂亮」,所以沒有貼!!
刪除作者已經移除這則留言。
回覆刪除