Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2021年11月1日 星期一

110年調查人員特考-工程數學詳解

 110年公務人員特種考試法務部調查局調查人員考試

考 試 別: 調查人員
等 別: 三等考試
類 科 組: 電子科學組
科 目: 工程數學

解答
(一)det(A)=|2131924811|=19824+8108+1132=53(二)A1=1det(A)||92811||13811||1392||12411||23411||2312||1948||2148||2119||=153|83132519107441219|A1=|83/5313/5325/5319/5310/537/5344/5312/5319/53|(三){2x1x2+3x3=4x1+9x22x3=84x18x2+11x3=15A[x1x2x3]=[4815][x1x2x3]=A1[4815]=[83/5313/5325/5319/5310/537/5344/5312/5319/53][4815]=[61/5351/5313/53](x1,x2,x3)=(6153,5153,1354)


解答A=[3/31/31/33/3]=23[3/21/21/23/2]=23[cos(π/6)sin(π/6)sin(π/6)cos(π/6)]A14=214314[cos(14π/6)sin(14π/6)sin(14π/6)cos(14π/6)]=214314[cos(π/3)sin(π/3)sin(π/3)cos(π/3)]=214314[1/23/23/21/2]=[213/3142133/3142133/314213/314]
解答y
解答
(一)F(s)=\int_0^\infty f(t)e^{-st}\;dt= \int_0^\infty (t+1)e^{-st}\;dt= \left.\left[ -{1\over s}te^{-st} -{1\over s^2}e^{-st} -{1\over s}e^{-st}\right]\right|_0^\infty \\ =0-(-{1\over s^2}-{1\over s}) = \bbox[red,2pt]{s+1\over s^2}(二)G(s)=\int_0^\infty g(t)e^{-st}\;dt= \int_0^5 te^{-st}\;dt= \left.\left[ -{1\over s}te^{-st} -{1\over s^2}e^{-st}  \right]\right|_0^5 \\=\left( -{5\over s}e^{-5s}-{1\over s^2}e^{-5s}\right)- \left( -{1\over s^2}\right)= \bbox[red,2pt]{{1\over s^2}-\left({5\over s} +{1\over s^2}\right)e^{-5s}}
解答令f(z)={e^z\over (z+i)(z+2i)^3}  \Rightarrow \cases{Res(f,-i) =\left . {e^z\over (z+2i)^3}\right|_{z=-i}=ie^{-i}\\ Res(f,-2i) =\left. {1\over 2}\left( {2\over (z+i)^3}-{2\over (z+i)^2}+{1\over z+i}\right)e^z\right|_{z=-2i}={2-i\over 2 }e^{-2i}} \\ \Rightarrow \oint_C f(z)\;dz = 2\pi i(Res(f,-i)+Res(f,-2i))=2\pi i\left(ie^{-i}+{2-i\over 2}e^{-2i}\right) \\ = \bbox[red,2pt]{-2\pi e^{-i}+(2 i+1)\pi e^{-2i}}

解答

(一)E[X]=\int_{-\infty}^\infty x\cdot f_X(x)\;dx =\int_{0}^\infty x\cdot 2e^{-2x}\;dx =\left.\left[-xe^{-2x}-{1\over 2}e^{-2x} \right]\right|_0^\infty =0-(-{1\over 2})= \bbox[red,2pt]{1\over 2}(二)E[X^2]=\int_{-\infty}^\infty x^2\cdot f_X(x)\;dx =\int_{0}^\infty x^2\cdot 2e^{-2x}\;dx =\left.\left[-x^2e^{-2x}-xe^{-2x}-{1\over 2}e^{-2x} \right]\right|_0^\infty\\ =0-(-{1\over 2})= \bbox[red,2pt]{1\over 2}(三)F_Y(y)=P(Y\le y) = P((2X+1)^2\le y) =P \left({-\sqrt y-1\over 2} \le X\le {\sqrt y-1\over 2}\right) \\=F_X\left({\sqrt y-1\over 2} \right)-F_X\left({-\sqrt y-1\over 2} \right)\\ \Rightarrow f_Y(y)= {1\over 4\sqrt y}f_X\left({\sqrt y-1\over 2} \right)+{1\over 4\sqrt y}f_X\left({-\sqrt y-1\over 2} \right) ={1\over 4\sqrt y}\left( 2e^{-\sqrt y+1}+ 2e^{\sqrt y+1}\right) \\ \Rightarrow \bbox[red,2pt]{f_Y(y)= \cases{{1\over 2\sqrt y}\left(e^{1-\sqrt y}+ e^{1+\sqrt y} \right),y\gt 0\\0,其它}}

=============== end =========================

解題僅供參考,其他工程數學試題及詳解

2 則留言:

  1. 請問第6題倒數第二行1/4√y怎來的

    回覆刪除