110年公務人員特種考試法務部調查局調查人員考試
考 試 別: 調查人員
等 別: 三等考試
類 科 組: 電子科學組
科 目: 工程數學
解答:
(一)det(A)=|2−1319−24−811|=198−24+8−108+11−32=53(二)A−1=1det(A)||9−2−811|−|−13−811||−139−2|−|1−2411||23411|−|231−2||194−8|−|2−14−8||2−119||=153|83−13−25−19107−441219|⇒A−1=|83/53−13/53−25/53−19/5310/537/53−44/5312/5319/53|(三){2x1−x2+3x3=4x1+9x2−2x3=−84x1−8x2+11x3=15≡A[x1x2x3]=[4−815]⇒[x1x2x3]=A−1[4−815]=[83/53−13/53−25/53−19/5310/537/53−44/5312/5319/53][4−815]=[61/53−51/5313/53]⇒(x1,x2,x3)=(6153,−5153,1354)
解答:A=[√3/3−1/31/3√3/3]=23[√3/2−1/21/2√3/2]=23[cos(π/6)−sin(π/6)sin(π/6)cos(π/6)]⇒A14=214314[cos(14π/6)−sin(14π/6)sin(14π/6)cos(14π/6)]=214314[cos(π/3)−sin(π/3)sin(π/3)cos(π/3)]=214314[1/2−√3/2√3/21/2]=[213/314−213√3/314213√3/314213/314]
解答:y″解答:(一)F(s)=\int_0^\infty f(t)e^{-st}\;dt= \int_0^\infty (t+1)e^{-st}\;dt= \left.\left[ -{1\over s}te^{-st} -{1\over s^2}e^{-st} -{1\over s}e^{-st}\right]\right|_0^\infty \\ =0-(-{1\over s^2}-{1\over s}) = \bbox[red,2pt]{s+1\over s^2}(二)G(s)=\int_0^\infty g(t)e^{-st}\;dt= \int_0^5 te^{-st}\;dt= \left.\left[ -{1\over s}te^{-st} -{1\over s^2}e^{-st} \right]\right|_0^5 \\=\left( -{5\over s}e^{-5s}-{1\over s^2}e^{-5s}\right)- \left( -{1\over s^2}\right)= \bbox[red,2pt]{{1\over s^2}-\left({5\over s} +{1\over s^2}\right)e^{-5s}}解答:令f(z)={e^z\over (z+i)(z+2i)^3} \Rightarrow \cases{Res(f,-i) =\left . {e^z\over (z+2i)^3}\right|_{z=-i}=ie^{-i}\\ Res(f,-2i) =\left. {1\over 2}\left( {2\over (z+i)^3}-{2\over (z+i)^2}+{1\over z+i}\right)e^z\right|_{z=-2i}={2-i\over 2 }e^{-2i}} \\ \Rightarrow \oint_C f(z)\;dz = 2\pi i(Res(f,-i)+Res(f,-2i))=2\pi i\left(ie^{-i}+{2-i\over 2}e^{-2i}\right) \\ = \bbox[red,2pt]{-2\pi e^{-i}+(2 i+1)\pi e^{-2i}}

解答:
(一)E[X]=\int_{-\infty}^\infty x\cdot f_X(x)\;dx =\int_{0}^\infty x\cdot 2e^{-2x}\;dx =\left.\left[-xe^{-2x}-{1\over 2}e^{-2x} \right]\right|_0^\infty =0-(-{1\over 2})= \bbox[red,2pt]{1\over 2}(二)E[X^2]=\int_{-\infty}^\infty x^2\cdot f_X(x)\;dx =\int_{0}^\infty x^2\cdot 2e^{-2x}\;dx =\left.\left[-x^2e^{-2x}-xe^{-2x}-{1\over 2}e^{-2x} \right]\right|_0^\infty\\ =0-(-{1\over 2})= \bbox[red,2pt]{1\over 2}(三)F_Y(y)=P(Y\le y) = P((2X+1)^2\le y) =P \left({-\sqrt y-1\over 2} \le X\le {\sqrt y-1\over 2}\right) \\=F_X\left({\sqrt y-1\over 2} \right)-F_X\left({-\sqrt y-1\over 2} \right)\\ \Rightarrow f_Y(y)= {1\over 4\sqrt y}f_X\left({\sqrt y-1\over 2} \right)+{1\over 4\sqrt y}f_X\left({-\sqrt y-1\over 2} \right) ={1\over 4\sqrt y}\left( 2e^{-\sqrt y+1}+ 2e^{\sqrt y+1}\right) \\ \Rightarrow \bbox[red,2pt]{f_Y(y)= \cases{{1\over 2\sqrt y}\left(e^{1-\sqrt y}+ e^{1+\sqrt y} \right),y\gt 0\\0,其它}}
=============== end =========================
解題僅供參考,其他工程數學試題及詳解
請問第6題倒數第二行1/4√y怎來的
回覆刪除Fx((√y-1)/2) 對 y微分就有1/4√y...
刪除