教育部 110 年自學進修專科學校學力鑑定考試
解答:(A)×:{f(x)為偶函數sin(nx)為奇函數⇒f(x)sin(nx)為奇函數⇒∫1−1f(x)sin(nx)dx=0(B)×:{f(x)為偶函數cos(nx)為偶函數⇒f(x)sin(nx)為偶函數⇒∫1−1f(x)sin(nx)dx≠0(C)×:f(x)為偶函數⇒f(−x)=f(x)≠−f(x)(D)◯:f(x)為偶函數⇒∫1−1f(x)dx=∫0−1f(x)dx+∫10f(x)dx=2∫10f(x)dx,故選(D)
解答:{→u=(1,2,a)→v=(2,1,3)→n=→u×→v=(5,−1,b)⇒{→u×→n=0→v×→n=0⇒{5−2+ab=010−1+3b=0⇒{a=1b=−3⇒a+b=1−3=−2,故選(A)
解答:{→u=(2,1,2)→v=(2,6,a)→w=(1,3,5)⇒→u⋅(→v×→w)=(2,1,2)⋅((2,6,a)×(1,3,5))=(2,1,2)⋅(30−3a,a−10,0)=60−6a+a−10=50−5a=0⇒a=10,故選(D)
解答:2A+3B−C=2[1123]+3[2134]−[3216]=[2246]+[63912]−[3216]=[851318]−[3216]=[531212],故選(B)
解答:|106a216532|+|−10−6−1216532|=(a−4)+3=5⇒a=6,故選(D)
解答:[5ab1][1225]=[5+2a10+5ab+22b+5]=[1001]⇒{a=−2b=−2⇒a+2b=−2−4=−6,故選(A)
解答:y′=x+1y2⇒y2y′=x+1⇒∫y2dy=∫x+1dx⇒13y3=12x2+x+C將y(0)=1代入上式⇒13=C⇒13y3=12x2+x+13⇒y3=32x2+3x+1⇒y=3√1.5x2+3x+1,故選(B)
解答:(2→u−→v)⋅→w=((6,0,2)−(2,3,1))⋅(a,2,5)=(4,−3,1)⋅(a,2,5)=4a−6+5=23⇒4a=24⇒a=6,故選(B)
解答:可以簡化成y′=f(yx),稱為齊次(A)y′=xy+y2x2=yx+(yx)2⇒齊次,故選(A)
解答:W(x)=|f1f2f′1f′2|(A)×:W(x)=|sin(2x)sin(x)cos(x)2cos(2x)cos(2x)|=sin(2x)cos(2x)−cos(2x)sin(2x)=0(B)×:W(x)=|ln(x2)ln(x)2/x1/x|=ln(x2)x−2ln(x)x=2ln(x)x−2ln(x)x=0(C)◯:W(x)=|sin(x)cos(x)cos(x)−sin(x)|=−sin2(x)−cos2(x)=−1≠0(D)×:W(x)=|x2+x4x(x+1)2x+14(2x+1)|=4x(x+1)(2x+1)−4x(x+1)(2x+1)=0,故選(C)
解答:(ex−siny)dx+cosydy=0⇒令{M(x,y)=ex−sinyN(x,y)=cosy(A)◯:{e−xM(x,y)=1−e−xsinye−xN(x,y)=e−xcosy⇒{ddye−xM(x,y)=−e−xcosyddxe−xN(x,y)=−e−xcosy,兩者相同(B)×:{sin(x)M(x,y)=sin(x)ex−sin(x)sinysin(x)N(x,y)=sin(x)cosy⇒{ddysin(x)M(x,y)=−sin(x)cosyddxsin(x)N(x,y)=cos(x)cosy,兩者不同(C)×:{exM(x,y)=e2x−exsinyexN(x,y)=excosy⇒{ddyexM(x,y)=−excosyddxexN(x,y)=excosy,兩者不同(D)×:{cos(x)M(x,y)=cos(x)ex−cos(x)sinycos(x)N(x,y)=cos(x)cosy⇒{ddycos(x)M(x,y)=−cos(x)cosyddxcos(x)N(x,y)=−sin(x)cosy,兩者不同,故選(A)
解答:{x+y=4x−y=−2⇒{x=1y=3代入{ax+2y=82x+by=5⇒{a+6=82+3b=5⇒{a=2b=1⇒a+b=3,故選(C)
解答:y″+y′−6y=0⇒λ2+λ−6=0⇒(λ+3)(λ−2)=0⇒λ=−3,2⇒y=C1e−3x+C2e2x,故選(B)
解答:(A)×:L{eat}=1s−a≠ss−a(B)×:L{sin(t)}=1s2+1≠ss2+1(C)◯:L{eatf(t)}=F(s−a)(D)×:L{f(at)}=1aF(sa)≠aF(as),故選(C)
解答:ABt=[312253][231520]=[11141531],故選(A)
解答:L{f∗g}=L{f}×L{g}⇒L{et∗sin(t)}=L{et}×L{sin(t)}=1s−1×1s2+1,故選(D)
解答:∫sin(nx)sin(nx)dx=∫sin2(nx)dx>0,故選(C)
解答:(A−λI)X=0⇒[2−7a54−7][35]=[−5a5−3][35]=0⇒−15+5a=0⇒a=3,故選(C)
解答:det
解答:g(t)=\cases{0,t\lt a\\ f(t-a),t\ge a} =u(t-a)f(t-a) \Rightarrow \mathcal{L}\{g(t)\} =\mathcal{L}\{u(t-a)f(t-a)\} =e^{-as}F(s)\\,故選\bbox[red,2pt]{(A)}
======================== END ========================
解題僅供參考,其他歷年專科學力鑑定試題及詳解
沒有留言:
張貼留言