Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2021年11月16日 星期二

110年專科學力鑑定-工程數學詳解

教育部 110 年自學進修專科學校學力鑑定考試

解答(A)×:{f(x)sin(nx)f(x)sin(nx)11f(x)sin(nx)dx=0(B)×:{f(x)cos(nx)f(x)sin(nx)11f(x)sin(nx)dx0(C)×:f(x)f(x)=f(x)f(x)(D):f(x)11f(x)dx=01f(x)dx+10f(x)dx=210f(x)dx(D)

解答{u=(1,2,a)v=(2,1,3)n=u×v=(5,1,b){u×n=0v×n=0{52+ab=0101+3b=0{a=1b=3a+b=13=2(A)
解答{u=(2,1,2)v=(2,6,a)w=(1,3,5)u(v×w)=(2,1,2)((2,6,a)×(1,3,5))=(2,1,2)(303a,a10,0)=606a+a10=505a=0a=10(D)
解答2A+3BC=2[1123]+3[2134][3216]=[2246]+[63912][3216]=[851318][3216]=[531212](B)
解答|106a216532|+|1061216532|=(a4)+3=5a=6(D)
解答[5ab1][1225]=[5+2a10+5ab+22b+5]=[1001]{a=2b=2a+2b=24=6(A)
解答y=x+1y2y2y=x+1y2dy=x+1dx13y3=12x2+x+Cy(0)=113=C13y3=12x2+x+13y3=32x2+3x+1y=31.5x2+3x+1(B)
解答(2uv)w=((6,0,2)(2,3,1))(a,2,5)=(4,3,1)(a,2,5)=4a6+5=234a=24a=6(B)
解答y=f(yx)(A)y=xy+y2x2=yx+(yx)2(A)
解答W(x)=|f1f2f1f2|(A)×:W(x)=|sin(2x)sin(x)cos(x)2cos(2x)cos(2x)|=sin(2x)cos(2x)cos(2x)sin(2x)=0(B)×:W(x)=|ln(x2)ln(x)2/x1/x|=ln(x2)x2ln(x)x=2ln(x)x2ln(x)x=0(C):W(x)=|sin(x)cos(x)cos(x)sin(x)|=sin2(x)cos2(x)=10(D)×:W(x)=|x2+x4x(x+1)2x+14(2x+1)|=4x(x+1)(2x+1)4x(x+1)(2x+1)=0(C)
解答(exsiny)dx+cosydy=0{M(x,y)=exsinyN(x,y)=cosy(A):{exM(x,y)=1exsinyexN(x,y)=excosy{ddyexM(x,y)=excosyddxexN(x,y)=excosy(B)×:{sin(x)M(x,y)=sin(x)exsin(x)sinysin(x)N(x,y)=sin(x)cosy{ddysin(x)M(x,y)=sin(x)cosyddxsin(x)N(x,y)=cos(x)cosy(C)×:{exM(x,y)=e2xexsinyexN(x,y)=excosy{ddyexM(x,y)=excosyddxexN(x,y)=excosy(D)×:{cos(x)M(x,y)=cos(x)excos(x)sinycos(x)N(x,y)=cos(x)cosy{ddycos(x)M(x,y)=cos(x)cosyddxcos(x)N(x,y)=sin(x)cosy(A)
解答{x+y=4xy=2{x=1y=3{ax+2y=82x+by=5{a+6=82+3b=5{a=2b=1a+b=3(C)
解答y+y6y=0λ2+λ6=0(λ+3)(λ2)=0λ=3,2y=C1e3x+C2e2x(B)
解答(A)×:L{eat}=1sassa(B)×:L{sin(t)}=1s2+1ss2+1(C):L{eatf(t)}=F(sa)(D)×:L{f(at)}=1aF(sa)aF(as)(C)
解答ABt=[312253][231520]=[11141531](A)
解答L{fg}=L{f}×L{g}L{etsin(t)}=L{et}×L{sin(t)}=1s1×1s2+1(D)
解答sin(nx)sin(nx)dx=sin2(nx)dx>0(C)
解答(AλI)X=0[27a547][35]=[5a53][35]=015+5a=0a=3(C)
解答det
解答g(t)=\cases{0,t\lt a\\ f(t-a),t\ge a} =u(t-a)f(t-a)  \Rightarrow \mathcal{L}\{g(t)\} =\mathcal{L}\{u(t-a)f(t-a)\} =e^{-as}F(s)\\,故選\bbox[red,2pt]{(A)}
======================== END ========================

解題僅供參考,其他歷年專科學力鑑定試題及詳解

沒有留言:

張貼留言