Processing math: 95%

2022年4月28日 星期四

111年嘉義高中教甄-數學詳解

國立嘉義高級中學111學年度第1次教師甄選

填充題:共 20 題,每題 5 分,合計 100 分

解答2n1312log2n<1312nlog2<13120.301n<130.30139.86n<43.19n=40,41,42,43
解答1222+3242++392402+412=21k=1(2k1)220k=1(2k)2=21k=1(4k24k+1)20k=1(4k2)=4212421k=1k+21=4441421222+21=1764924+21=861
解答{n+11=7kn+7=11m{n+18=7k+7=7kn+18=11m+11=11mn+18711n+1877n+18=77tn=77t18,tZ
解答{(p=0.2)(p=0.8){(p=0.6){(p=0.2)(p=0.8)(p=0.4)=0.80.4+0.80.60.20.2+0.80.4+0.80.60.2=52/12577/125=5277
解答x+2y+3=0n=(2,1)abnan=bn(1,m)(2,1)=(n,2)(2,1)m+2n=4(m2+n2)(12+22)(m+2n)2m2+n242/5=165|a|2+|b|2=m2+n2+5165+5=415
解答{L1:xa2=y31=z21L2:x11=y21=za2{L1P(a,3,2)(2,1,1)L2Q(1,2,a)(1,1,2)(2,1,1)×(1,1,2)=(1,3,1):x+3y+z=kx3yz=d{b=3c=1P,Q{a92=d16a=da11=5aa=3d=8(a,b,c,d)=(3,3,1,8)
解答A=[3113]det(AλI)=0λ=2,4{λ=2(AλI)X=0X=(t,t)λ=4(AλI)X=0X=(s,s)P=[tsts]=2st=2a,b,c,dZ{s=t=1P=[1111]s=t=1P=[1111]P=[1111][1111]
解答θcosθ=5+67230=230sinθ=2630ABC=12562630=1226ABC=ABCdet(T)=1226|1214|=12266=326

解答an=1+3+5++4n+1=(4n+2)(2n+1)÷2=(2n+1)2limnann2=limn(2n+1)2n2=4
解答Γ:9(x22x+1)+16(y24y+4)=144(x1)216+(y2)29=1PΓP(4cosθ+1,3sinθ+2)d(P,L)=|8cosθ1815sinθ4+25|=|17sin(αθ)18|298cosθ15sinθ=17{cosθ=8/17sinθ=15/17P(3217+1,4517+2)=(4917,1117)
解答{a,b,f,g4!5c,d,eC53c,d,e3!=6c,d,e4!×C53×3=1440;{a,b,f,g3!×2=124c,d,eC43c,d,e3!=6c,d,ea,b12×C43×3=288;a,bc,d,e1440288=1152
解答
PADxRS¯PS=h;¯PS=h¯CS=h/3¯SO=1h3=¯RDcosRAP={ADPQCP¯DP:¯PC=¯AD:¯QCCSPDRP¯DP:¯PC=¯RP:¯PS¯AD¯QC=¯RP¯PS2¯QC=3hh¯QC=2h3h{ADP=¯ADׯRP÷2=3hCQP=¯QCׯPS÷2=h2/(3h)f(h)=ADP+CQP=(3h)+h23hf(h)=01+2h3h+h2(3h)2=0(3h)2+2h(3h)+h2=02h243h+3=0h=36/2f(36/2)=62+(2362)26/2=62+9626=2623

解答
cosC=12=62+22¯BD2226=40¯BD224¯BD=272sinCBD=273/2sinCBD=327¯CP=¯BCsinCBD=6327=337¯DP¯AQ¯CD¯CA=¯CP¯CQ26=337¯CQ¯CQ=937=9721

解答

¯CE¯ABO{OAByCEx;{AQB=90¯AB=4¯QB=2ABC=60¯OE=¯BEsin60=33E(0,0,33);{¯DP=¯CDsin30=2¯CP=¯CDcos60=23¯OP=3D(3,2,0)¯DE=3+4+27=34
解答E1E2h=d(E1,E2)=93=33{P=E1E3E4=(11/3,1/3,4/3)Q=E1E4E5=(3,1,2)R=E1E3E5=(5/3,1/3,2/3){u=PQ=(2/3,4/3,2/3)v=PR=(2,0,2)PQR=12|u|2|v|2(uv)2=1264/30=4/3=43×33=12
解答

Q(2,1)L:y=m(x2)+1y=f(x)=x2xx2x=m(x2)+1x2(m+1)x+2m1=0=0(m+1)24(2m1)=0m26m+5=0(m5)(m1)=0{m=5L1:y=5x9m=1L2:y=x1{A=ΓL2=(1,0)B=ΓL1=(3,6)C=(x=2)Γ=(2,2)=21(x2x)(x1)dx+32(x2x)(5x9)dx=21x22x+1dx+32x26x+9dx=[13x3x2+x]|21+[13x33x2+9x]|32=13+13=23
解答(2)×:{B:(xa)2+(yb)2=r2C:x2+(y+2)2=4=a2+(b+2)2=(r+2)2(1);(0,4)Ba2+(b4)2=r2(2)(1)(2)(a,b)(3)×:{B:(xa)2+(yb)2=r2C:x2+y2=49={a2+b2=(r+7)2a2+(b4)2=r2a2+b2=(a2+(b4)2+7)2a2+3349(b2)2=334(145)
解答an+2an+6an+2an+1=an+1anan+2(an+6an+1)=an+1anan+6an+1an+1an=1an+21an+1+6an=1an+2bn+2=bn+1+6bn,bn=1anbn+2bn+16bn,{b1=1b2=1/2λ2λ6=0λ=3,2bn=C1(2)n+C23n;{b1=1=2C1+3C2b2=1/2=4C1+9C2{C1=1/4C2=1/6bn=1an=14(2)n163nan=114(2)n163n=112(2)n1123n1=2(2)n13n1,nN
解答{x(1+1x+y)=2y(11x+y)=2{1+1x+y=2/x(1)11x+y=2/y(2)(1)2(2)2=(1+1x+y)2(11x+y)2=4x2y4x+y=4y2xxy4xy=(x+y)(4y2x)x2+xy2y2=0(x+2y)(xy)=0x=y(x,y0x2y)(1)1+12x=2x(2x+1)24x2=4x4x212x+1=0x=3+222()(x,y)=(3+222,3+222)
解答令q=1-p,則E(n)= \sum_{n=1}^\infty nq^{n-1}p =p\sum_{n=1}^\infty{d\over dq}q^n =p{d\over dq}\sum_{n=1}^\infty q^n =p{d\over dq}{q\over 1-q} ={p\over (1-q)^2 }= \color{blue}{1\over p}\\同理,E(n(n-1)) =\sum_{n=1}^\infty n(n-1) q^{n-1}p =pq \sum_{n=1}^\infty n(n-1) q^{n-2}  =pq \sum_{n=1}^\infty {d^2\over dq^2}q^n \\= pq {d^2\over dq^2}\sum_{n=1}^\infty q^n =pq {d^2\over dq^2} {q\over 1-q} =pq \cdot {2\over (1-q)^3} ={2(1-p)\over p^2} \\\Rightarrow E(n^2)= E(n(n-1)+n) =E(n(n-1)) +E(n) ={2(1-p)\over p^2} +{1\over p}= \color{blue}{2-p\over p^2}\\ E(n(n-1)(n-2)) = \sum_{n=1}^\infty n(n-1)(n-2) q^{n-1}p = pq^2\sum_{n=1}^\infty n(n-1)(n-2) q^{n-3 } \\=pq^2\sum_{n=1}^\infty {d^3\over dq^3} q^n =pq^2 {d^3\over dq^3}\sum_{n=1}^\infty  q^n =pq^2 {d^3\over dq^3}{q\over 1-q}= pq^2 \cdot {6\over (1-q)^4} =\color{blue} {6(1-p)^2\over p^3}\\ 最後E(n^3) = E(n(n-1)(n-2)) +3E(n^2)-2E(n) ={6(1-p)^2\over p^3}+3\cdot {2-p\over p^2}-2\cdot {1\over p} \\=\bbox[red, 2pt]{p^2-6p+6 \over p^3}\\註:如果你有背幾何分布的期望值及變異數,就可以很快算出答案
======================== END ==============================
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言