國立嘉義高級中學111學年度第1次教師甄選
填充題:共 20 題,每題 5 分,合計 100 分
解答:12−22+32−42+⋯+392−402+412=21∑k=1(2k−1)2−20∑k=1(2k)2=21∑k=1(4k2−4k+1)−20∑k=1(4k2)=4⋅212−421∑k=1k+21=4⋅441−4⋅21⋅222+21=1764−924+21=861
解答:{n+11=7kn+7=11m⇒{n+18=7k+7=7k′n+18=11m+11=11m′⇒n+18是7的倍數也是11的倍數⇒n+18是77的倍數⇒n+18=77t⇒n=77t−18,t∈Z
解答:甲寄出{遺失(p=0.2)乙收到(p=0.8){回信(p=0.6){遺失(p=0.2)甲收到(p=0.8)不回信(p=0.4)⇒甲沒收到回信且乙有收到信甲沒收到回信=0.8⋅0.4+0.8⋅0.6⋅0.20.2+0.8⋅0.4+0.8⋅0.6⋅0.2=52/12577/125=5277
解答:x+2y+3=0的方向向量為→n=(2,−1),又→a及→b在→n上有相同的正射影⇒→a⋅→n=→b⋅→n⇒(1,m)⋅(2,−1)=(n,2)⋅(2,−1)⇒m+2n=4⇒(m2+n2)(12+22)≥(m+2n)2⇒m2+n2≥42/5=165⇒|→a|2+|→b|2=m2+n2+5≥165+5=415
解答:{L1:x−a2=y−31=z−2−1L2:x−11=y−21=z−a−2⇒{L1通過P(a,3,2)且方向向量為(2,1,−1)L2通過Q(1,2,a)且方向向量為(1,1,−2)⇒平面的法向量為(2,1,−1)×(1,1,−2)=(−1,3,1)⇒平面方程式:−x+3y+z=k⇒x−3y−z=d⇒{b=−3c=−1再將P,Q代入平面方程式⇒{a−9−2=d1−6−a=d⇒a−11=−5−a⇒a=3⇒d=−8⇒(a,b,c,d)=(3,−3,−1,−8)
解答:A=[−311−3]⇒det(A−λI)=0⇒λ=−2,−4{λ=−2⇒(A−λI)X=0⇒X=(t,t)λ=−4⇒(A−λI)X=0⇒X=(s,−s)⇒P=[tst−s]=−2st=−2由於a,b,c,d∈Z,因此{取s=t=1⇒P=[111−1]取s=t=−1⇒P=[−1−1−11]⇒P=[111−1]或[−1−1−11]
解答:最大角為θ⇒cosθ=5+6−72√30=2√30⇒sinθ=√2630⇒△ABC=12⋅√5⋅√6⋅√2630=12√26⇒△A′B′C′=△ABC⋅det(T)=12√26⋅|12−14|=12√26⋅6=3√26
解答:an=1+3+5+⋯+4n+1=(4n+2)(2n+1)÷2=(2n+1)2⇒limn→∞ann2=limn→∞(2n+1)2n2=4
解答:Γ:9(x2−2x+1)+16(y2−4y+4)=144⇒(x−1)216+(y−2)29=1P∈Γ⇒P(4cosθ+1,3sinθ+2)⇒d(P,L)=|8cosθ−18−15sinθ√4+25|=|17sin(α−θ)−18|√29⇒最大值發生在8cosθ−15sinθ=17,即{cosθ=8/17sinθ=−15/17⇒P(3217+1,−4517+2)=(4917,−1117)解答:{a,b,f,g任排有4!排法在5個間隙插入c,d,e,有C53插法c,d,e任排有3!=6種排法⇒c,d,e不相鄰有4!×C53×3=1440排法;{a,b相鄰,f,g任排有3!×2=12排法在4個間隙插入c,d,e,有C43插法c,d,e任排有3!=6種排法⇒c,d,e不相鄰且a,b相鄰有12×C43×3=288排法;因此a,b不相鄰且c,d,e不相鄰有1440−288=1152種
解答:
過P作垂直線,分別交↔AD與x軸交於R、S,並令¯PS=h,見上圖;¯PS=h⇒¯CS=h/√3⇒¯SO=1−h√3=¯RD⇒cos∠RAP={△ADP∼△QCP⇒¯DP:¯PC=¯AD:¯QC△CSP∼△DRP⇒¯DP:¯PC=¯RP:¯PS⇒¯AD¯QC=¯RP¯PS⇒2¯QC=√3−hh⇒¯QC=2h√3−h⇒{△ADP=¯ADׯRP÷2=√3−h△CQP=¯QCׯPS÷2=h2/(√3−h)⇒f(h)=△ADP+△CQP=(√3−h)+h2√3−h,則f′(h)=0⇒−1+2h√3−h+h2(√3−h)2=0⇒−(√3−h)2+2h(√3−h)+h2=0⇒2h2−4√3h+3=0⇒h=√3−√6/2⇒f(√3−√6/2)=√62+(2√3−√62)2√6/2=√62+9−6√2√6=2√6−2√3
解答:
cos∠C=12=62+22−¯BD22⋅2⋅6=40−¯BD224⇒¯BD=2√7⇒2sin∠CBD=2√7√3/2⇒sin∠CBD=√32√7⇒¯CP=¯BC⋅sin∠CBD=6⋅√32√7=3√37¯DP∥¯AQ⇒¯CD¯CA=¯CP¯CQ⇒26=3√37¯CQ⇒¯CQ=9√37=97√21
假設¯CE與¯AB交於O,並以{O為空間的原點↔AB為y軸↔CE為x軸;由於{∠AQB=90∘¯AB=4¯QB=2⇒∠ABC=60∘⇒¯OE=¯BE⋅sin60∘=3√3⇒摺起後E(0,0,3√3);又{¯DP=¯CDsin30∘=2¯CP=¯CDcos60∘=2√3⇒¯OP=√3⇒D(−√3,2,0)⇒¯DE=√3+4+27=√34
解答:E1∥E2⇒角柱高h=d(E1,E2)=9√3=3√3,又{P=E1∩E3∩E4=(11/3,−1/3,−4/3)Q=E1∩E4∩E5=(3,1,−2)R=E1∩E3∩E5=(5/3,−1/3,2/3)⇒{→u=→PQ=(−2/3,4/3,−2/3)→v=→PR=(−2,0,2)⇒△PQR=12√|→u|2|→v|2−(→u⋅→v)2=12√64/3−0=4/√3⇒三角柱體積=4√3×3√3=12
解答:
解答:
通過Q(2,1)的直線L:y=m(x−2)+1代入y=f(x)=x2−x⇒x2−x=m(x−2)+1⇒x2−(m+1)x+2m−1=0⇒判別式=0,即(m+1)2−4(2m−1)=0⇒m2−6m+5=0⇒(m−5)(m−1)=0⇒{m=5⇒L1:y=5x−9m=1⇒L2:y=x−1⇒{A=Γ∩L2=(1,0)B=Γ∩L1=(3,6)C=(x=2)∩Γ=(2,2)所圍面積=∫21(x2−x)−(x−1)dx+∫32(x2−x)−(5x−9)dx=∫21x2−2x+1dx+∫32x2−6x+9dx=[13x3−x2+x]|21+[13x3−3x2+9x]|32=13+13=23
解答:(2)×:假設兩圓{圓B:(x−a)2+(y−b)2=r2圓C:x2+(y+2)2=4相切⇒兩圓心距離=兩半徑之和⇒a2+(b+2)2=(r+2)2⋯(1);又(0,4)在圓B上⇒a2+(b−4)2=r2⋯(2)由(1)及(2)可知圓心(a,b)軌跡為雙曲線(3)×:假設兩圓{圓B:(x−a)2+(y−b)2=r2圓C:x2+y2=49相切⇒兩圓心距離=兩半徑之和⇒{a2+b2=(r+7)2a2+(b−4)2=r2⇒a2+b2=(√a2+(b−4)2+7)2⇒a2+3349(b−2)2=334為一橢圓故選(145)
解答:an+2⋅an+6an+2⋅an+1=an+1⋅an⇒an+2(an+6an+1)=an+1⋅an⇒an+6an+1an+1⋅an=1an+2⇒1an+1+6an=1an+2⇒bn+2=bn+1+6bn,其中bn=1an⇒bn+2−bn+1−6bn,初始值{b1=1b2=1/2⇒特徵多項式λ2−λ−6=0⇒λ=3,−2⇒bn=C1(−2)n+C2⋅3n;再由初始值{b1=1=−2C1+3C2b2=1/2=4C1+9C2⇒{C1=−1/4C2=1/6⇒bn=1an=−14(−2)n−16⋅3n⇒an=1−14(−2)n−16⋅3n=112(−2)n−1−12⋅3n−1=2(−2)n−1−3n−1,n∈N
解答:{√x(1+1x+y)=2√y(1−1x+y)=√2⇒{1+1x+y=2/√x⋯(1)1−1x+y=√2/√y⋯(2)⇒(1)2−(2)2=(1+1x+y)2−(1−1x+y)2=4x−2y⇒4x+y=4y−2xxy⇒4xy=(x+y)(4y−2x)⇒x2+xy−2y2=0⇒(x+2y)(x−y)=0⇒x=y(∵x,y≥0⇒x≠−2y)代入(1)⇒1+12x=2√x⇒(2x+1)24x2=4x⇒4x2−12x+1=0⇒x=3+2√22(負值不合)⇒(x,y)=(3+2√22,3+2√22)
解答:令q=1-p,則E(n)= \sum_{n=1}^\infty nq^{n-1}p =p\sum_{n=1}^\infty{d\over dq}q^n =p{d\over dq}\sum_{n=1}^\infty q^n =p{d\over dq}{q\over 1-q} ={p\over (1-q)^2 }= \color{blue}{1\over p}\\同理,E(n(n-1)) =\sum_{n=1}^\infty n(n-1) q^{n-1}p =pq \sum_{n=1}^\infty n(n-1) q^{n-2} =pq \sum_{n=1}^\infty {d^2\over dq^2}q^n \\= pq {d^2\over dq^2}\sum_{n=1}^\infty q^n =pq {d^2\over dq^2} {q\over 1-q} =pq \cdot {2\over (1-q)^3} ={2(1-p)\over p^2} \\\Rightarrow E(n^2)= E(n(n-1)+n) =E(n(n-1)) +E(n) ={2(1-p)\over p^2} +{1\over p}= \color{blue}{2-p\over p^2}\\ E(n(n-1)(n-2)) = \sum_{n=1}^\infty n(n-1)(n-2) q^{n-1}p = pq^2\sum_{n=1}^\infty n(n-1)(n-2) q^{n-3 } \\=pq^2\sum_{n=1}^\infty {d^3\over dq^3} q^n =pq^2 {d^3\over dq^3}\sum_{n=1}^\infty q^n =pq^2 {d^3\over dq^3}{q\over 1-q}= pq^2 \cdot {6\over (1-q)^4} =\color{blue} {6(1-p)^2\over p^3}\\ 最後E(n^3) = E(n(n-1)(n-2)) +3E(n^2)-2E(n) ={6(1-p)^2\over p^3}+3\cdot {2-p\over p^2}-2\cdot {1\over p} \\=\bbox[red, 2pt]{p^2-6p+6 \over p^3}\\註:如果你有背幾何分布的期望值及變異數,就可以很快算出答案
解答:an+2⋅an+6an+2⋅an+1=an+1⋅an⇒an+2(an+6an+1)=an+1⋅an⇒an+6an+1an+1⋅an=1an+2⇒1an+1+6an=1an+2⇒bn+2=bn+1+6bn,其中bn=1an⇒bn+2−bn+1−6bn,初始值{b1=1b2=1/2⇒特徵多項式λ2−λ−6=0⇒λ=3,−2⇒bn=C1(−2)n+C2⋅3n;再由初始值{b1=1=−2C1+3C2b2=1/2=4C1+9C2⇒{C1=−1/4C2=1/6⇒bn=1an=−14(−2)n−16⋅3n⇒an=1−14(−2)n−16⋅3n=112(−2)n−1−12⋅3n−1=2(−2)n−1−3n−1,n∈N
解答:{√x(1+1x+y)=2√y(1−1x+y)=√2⇒{1+1x+y=2/√x⋯(1)1−1x+y=√2/√y⋯(2)⇒(1)2−(2)2=(1+1x+y)2−(1−1x+y)2=4x−2y⇒4x+y=4y−2xxy⇒4xy=(x+y)(4y−2x)⇒x2+xy−2y2=0⇒(x+2y)(x−y)=0⇒x=y(∵x,y≥0⇒x≠−2y)代入(1)⇒1+12x=2√x⇒(2x+1)24x2=4x⇒4x2−12x+1=0⇒x=3+2√22(負值不合)⇒(x,y)=(3+2√22,3+2√22)
解答:令q=1-p,則E(n)= \sum_{n=1}^\infty nq^{n-1}p =p\sum_{n=1}^\infty{d\over dq}q^n =p{d\over dq}\sum_{n=1}^\infty q^n =p{d\over dq}{q\over 1-q} ={p\over (1-q)^2 }= \color{blue}{1\over p}\\同理,E(n(n-1)) =\sum_{n=1}^\infty n(n-1) q^{n-1}p =pq \sum_{n=1}^\infty n(n-1) q^{n-2} =pq \sum_{n=1}^\infty {d^2\over dq^2}q^n \\= pq {d^2\over dq^2}\sum_{n=1}^\infty q^n =pq {d^2\over dq^2} {q\over 1-q} =pq \cdot {2\over (1-q)^3} ={2(1-p)\over p^2} \\\Rightarrow E(n^2)= E(n(n-1)+n) =E(n(n-1)) +E(n) ={2(1-p)\over p^2} +{1\over p}= \color{blue}{2-p\over p^2}\\ E(n(n-1)(n-2)) = \sum_{n=1}^\infty n(n-1)(n-2) q^{n-1}p = pq^2\sum_{n=1}^\infty n(n-1)(n-2) q^{n-3 } \\=pq^2\sum_{n=1}^\infty {d^3\over dq^3} q^n =pq^2 {d^3\over dq^3}\sum_{n=1}^\infty q^n =pq^2 {d^3\over dq^3}{q\over 1-q}= pq^2 \cdot {6\over (1-q)^4} =\color{blue} {6(1-p)^2\over p^3}\\ 最後E(n^3) = E(n(n-1)(n-2)) +3E(n^2)-2E(n) ={6(1-p)^2\over p^3}+3\cdot {2-p\over p^2}-2\cdot {1\over p} \\=\bbox[red, 2pt]{p^2-6p+6 \over p^3}\\註:如果你有背幾何分布的期望值及變異數,就可以很快算出答案
======================== END ==============================
沒有留言:
張貼留言