Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年4月30日 星期六

111年中壢高中教甄-數學詳解

國立中央大學附屬中壢高級中學111學年度第1次教師甄選

一、填充題:(每題7分,共計70分。)

解答1353664+3575664+5797664++19212321664=10k=1(2k1)(2k+1)(2k+3)((2k+1)3)282=10k=1(2k1)(2k+1)(2k+3)((2k+1)3)8)((2k+1)3)+8)=10k=1(2k1)(2k+1)(2k+3)(2k1)((2k+1)2+2(2k+1)+4)(2k+3)((2k+1)22(2k+1)+4)=10k=1(2k+1)((2k+1)2+2(2k+1)+4)((2k+1)22(2k+1)+4)=10k=1(2k+1)(4k2+3)(4k2+8k+7)=10k=1(2k+1)(4k2+3)(4(k+1)2+3)=1410k=1(1(4k2+3)1(4(k+1)2+3))=14(171487)=144803409=1203409
解答

f(x)=3x4+4x312x21f(x)=12x3+12x224x=0f(x)=36x2+24x24f(x)=0x(x2+x2)=x(x+2)(x1)=00,1,2f(x)=0{f(2)=18>0f(0)=24<0f(1)=36>0{f(2)=33f(0)=1f(1)=6;f(x)f(x)x1,x2{x1<2x2>1{f(3)=26>0f(2)=31>0{3<x1<21<x<2g(x)=f(f(x))=0{3<f(x)<241<f(x)<226
解答{L1:x+y=0L2:x+3y=0{AL1BL2G=L1L2{A(a,a)B(3b,b)G(0,0),a,bRG=(A+B+C)÷3C(a+3b,ab){CA=(2a3b,2a+b)CB=(a6b,a+2b){¯AB=18CACB=0{(a+3b)2+(ab)2=182(2a3b)(a6b)+(2a+b)(a+2b)=0ab=18ABC=3GAB=32aa3bb=3ab=3×18=54
解答

(62)1806=120{A(0,0)B(2,0)C(2+4cos60,4sin60)=(4,23)D(46cos60,23+6sin60)=(1,53)E(14,53)=(3,53){EF=3AF=3{EF:y=3(x+3)+53AF:y=3xF=EFAF=(4,43){¯EF=1+3=2¯AF=16+48=8¯EF+¯FA=10
解答{|bc|cos(A/2)=83(1)(b+c)sin(A/2)=13(2),(1)2+(2)2=(bc)2cos2(A/2)+(b+c)2sin2(A/2)=361b2+c22bc(cos2(A/2)sin2(A/2))=361b2+c2361=2bccosAcosA=b2+c21922bca=19

解答{x+y+z+4=0x+y+z2=0=63=23=23×32=32=23×(32)3=36

解答AL:x41=y+42=z+146A(t+4,2t4,6t14),tR{p=AP=(t1,2t+4,6t+19)q=AQ=(t+7,2t5,6t4)Lh=AH=(1,2,6){cosPAH=ph/(|p||h|)cosQAH=qh/(|q||h||PAH=QAHph|p||h|=qh|q||h|(41t+123)2(t1)2+(2t4)2+(6t19)2=(41t41)2(t+7)2+(2t+5)2+(6t+4)2412(t3)241(t3)2+9=412(t+1)241(t+1)2+4941(t+1)2(t3)2+49(t3)2=41(t+1)2(t3)2+9(t+1)249(t3)2=9(t+1)27(t3)=±3(t+1){t=6t=9/5{ph>0qh<0A=(6+4,124,3614)=(2,8,22)
解答{5P+2Q=AP+Q=I2{P=(A2I2)÷3Q=(5I2A)÷3{P=[3322]Q=[2323]A=[11964]A2=[67634238]A4=[1843182712181202]=aP+bQ=[3a2b3a3b2a+2b2a+3b]{a=625b=16log10ab=log1010000=4
解答z=32xyi=32x2+y2(x+yi)(x+2)2+(y2)2=8(32xx2+y2+2)2+(32yx2+y22)2=8(2x2+2y2+32x)2+(2x2+2y232y)2=8(x2+y2)2(x2+y2+16x)2+(x2+y216y)2=2(x2+y2)2(x2+y2)2+32x(x2+y2)+256x2+(x2+y2)232y(x2+y2)+256y2=2(x2+y2)232x(x2+y2)32y(x2+y2)+256x2+256y2=0(x2+y2)(32x32y+256)=032x32y+256=0xy+8=0

解答{P(AB)=P(AC)=1/2P(BC)=P(BA)=1/2P(CA)=P(CB)=1/2P(AA)=P(BB)=P(CC)=0A=[01/21/21/201/21/21/20]A5=[5/1611/3211/3211/325/1611/3211/3211/325/16]{A5[100]=[5/1611/3211/32]A5[010]=[11/325/1611/32]A5[001]=[11/3211/325/16]A=B=C=516(1132)2=60516384=3×60516384=181516384

二、 計算證明題:( 每題 10 分, 共計 30 分。 )

解答f(x)=xx22x+3+x2+34xf(x)=(x23)((x22x+3)24x2)4x2(x22x+3)2f(x)=0{x=3x22x+3=±2xx=1,3{f(3)=(1+33)/4f(1)=f(3)=3/2{(1)3/2(2)13
解答an:n{a1=7(1,2,3,4,5,6,a)a2=13(#A,A#,AA6+6+1=13,#){n1Ann2#Anan=an1+6an2anan16an2=0λ2λ6=0λ=3,2an=C13n+C2(2)n{a1=3C12C2=7a2=9C1+4C2=13{C1=9/5C2=4/5an=953n45(2)na5=953545(2)5=2187+1285=463{(1)463(2)an=953n45(2)n
解答

(1)y=f(x)=|||x|1|2|3x
y={x20x1x1x3x63x6x=10(x2)2πdx+31(x)2dx+63(x6)2dx=π([13(x2)3]|10+[13x3]|31+[13(x6)3]|63)=π(73+263+9)=20π=20π×2=40π


(2)x={y+22y1y3y1y+63y0y=03(y+6)2πdy13(y)2dy+12(y+2)2dy=π([13(y+6)3]|03[13y3]|13+[13(y+2)3]|12)=π3(18926+1)=164π3 

======================== END ==============================
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言