2025年10月9日 星期四

114年高雄聯合轉學考-升高三-數學A詳解

 高雄區公立高中 114 學年度聯合招考轉學生《升高三數學A》

一、 單選題(60 分):

解答:$$\log_7(2x+1) +\log_7(x-1) =\log_7(2x+1)(x-1) =\log_7 20 \\ \Rightarrow (2x+1)(x-1)=20 \Rightarrow 2x^2- x-21=0 \Rightarrow (2x-7)(x+3)=0 \Rightarrow x={7\over 2},故選\bbox[red, 2pt]{(D)}$$
解答:$$\sqrt[3]{a_{n+1}} ={\sqrt[3]{a_{n}} \times \sqrt[3]{a_{n+2}}\over \sqrt[3]{a_{n+1}}} \Rightarrow a_{n+1}^2 =a_n\times a_{n+2} \Rightarrow \langle a_n\rangle 為等比數列\Rightarrow 公比r={a_2\over a_1}=8 \\ \Rightarrow a_{10}=a_1r^9 =27\cdot 8^9 個位數=7\cdot 8的個位數=6,故選\bbox[red, 2pt]{(C)}, 公佈的答案是\bbox[cyan,2pt]{(B)}$$

解答:$$2I+J = \begin{bmatrix}2&1\\ -1&2 \end{bmatrix} \Rightarrow (2I+J)^{-1} = \begin{bmatrix} {2\over 5} &-{1\over 5}\\{1\over 5}& {2\over 5}\end{bmatrix} ={2\over 5}I-{1\over 5}J \Rightarrow \cases{r=2/5\\ j=-1/5} \\ \Rightarrow 3r-2s={8\over 5},故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{\vec a=(x_1,y_1) \\ \vec b=(x_2,y_2)} \Rightarrow \cases{|x_1y_2-x_2y_1|=15 \\ 3\vec a-2\vec b=(3x_1-2x_2,3y_1-2y_2) \\ 2\vec a+ 3\vec b=(2x_1+3x_2,2y_1+3y_2)} \\ \Rightarrow |(3x_1-2x_2) (2y_1+3y_2) -(2x_1+3x_2) (3y_1-2y_2)| =|13x_1y_2-13x_2y_1|=13\cdot 15=195\\,故選\bbox[red, 2pt]{(D)}$$
解答:$$\cases{A(13,1) \\B(18,1) \\C(6,9) \\D(3,11)} \Rightarrow \cases{ \overrightarrow{AD} =(-10,10) \\ \overrightarrow{BD} =(-15,10)\\ \overrightarrow{BC} =(-12,8) \\ \overrightarrow{AC} = (-7,8)} \Rightarrow |2 \overrightarrow{AD} -\overrightarrow{BD} + \overrightarrow{BC}-\overrightarrow{AC}| =|(-10,10)| =10\sqrt 2,故選\bbox[red, 2pt]{(A)}$$
解答:

$$\cases{\cos \alpha=3/\sqrt{10} \\ \cos \beta=2/\sqrt 5} \Rightarrow \cases{\sin \alpha=1/\sqrt{10} \\ \sin \beta =1/\sqrt 5} \Rightarrow \cos (\alpha+ \beta) =\cos \alpha\cos \beta-\sin \alpha\sin \beta  ={1\over \sqrt 2} \\ \Rightarrow 圓心角=\alpha+\beta={\pi\over 4} \Rightarrow \stackrel{\Large\frown}{AB} =r\cdot {\pi\over 4} =3140 \Rightarrow r=4000,故選\bbox[red, 2pt]{(B)}$$


解答:$$利用長除法可得f(x)=(x^2-3x+4)(-2x+a-6)+(3a+b-10)x+(-4a+c+24) \\ \Rightarrow \cases{3a+b-10=2\\ -4a+c+24 =-5} \Rightarrow \cases{3a+b=12 \cdots(1)\\ 4a-c=29} \cdots(2)\\ 又f(2)=5 \Rightarrow -16+4a+2b+c=5 \Rightarrow 4a+2b+c=21 \cdots(3) \\ 由(1),(2),(3)可得\cases{a=13\\ b=-27\\ c=23} \Rightarrow f(x)=-2x^3+13x^2-27x+23 \Rightarrow f(3)=5,故選\bbox[red, 2pt]{(D)}$$
解答:$$\cases{x\ge 4 \Rightarrow x+2+x-4\ge 8 \Rightarrow x\ge 5\\ -2\le x\le 4 \Rightarrow x+2-x+4=6\not \ge 8\\ x\le -2 \Rightarrow -2-x+4-x\ge 8 \Rightarrow x\le -3 } \Rightarrow x\le -3 或x\ge 5,故選\bbox[red, 2pt]{(A)}$$
解答:$$63=31+(95-31)e^{-5k} \Rightarrow e^{-5k} ={1\over 2} \Rightarrow e^{-20k} = \left({1\over 2} \right)^4={1\over 16} \\ \Rightarrow 31+(95-31)e^{-20k} =31+64\cdot {1\over 16}=35,故選\bbox[red, 2pt]{(B)}$$

解答:$$假設 \cases{f(x)=\sin x \\g(x)={|x|\over 4\pi}} \Rightarrow \cases{f(-11\pi/2)=1 \lt g(-11\pi/2)=11/8\\ f(-7\pi/2)=1 \gt g(-7\pi/2)=7/8\\ f(-3\pi/2)=1 \gt g(-3\pi/2)=3/8 \\ f(\pi/2)=1 \gt g(\pi/2)=1/8  \\ f(5\pi/2)=1 \gt g(5\pi/2) =5/8\\ f(9\pi/2)=1 \lt g(9\pi/2)=9/8} \\\Rightarrow 兩圖形在 \cases{x\lt 0的條件下,有四個交點\\x\ge 0的條件下,有四個交點} \Rightarrow 共八個交點,故選\bbox[red, 2pt]{(D)}$$



解答:$${未施打死亡病患數\over 死亡病患數} ={30\%\times 25\% \over 30\%\times 25\%+ 70\% \times15\%} ={5\over 12}\approx 41.6\%,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{A(0,0,0) \\B(a,0,a)\\ C(0,a,a)\\ D(a,a,0)} \Rightarrow 邊長\overline{AB}=a\sqrt 2=5 \Rightarrow a={5\over \sqrt 2} \Rightarrow \cases{\overrightarrow{AB}=(a,0,a) \\ \overrightarrow{CD} =(a,0,-a)} \\ \Rightarrow \left| \overrightarrow{AB} \times \overrightarrow{CD} \right| =|(0,2a^2,0)| =2a^2=25,故選\bbox[red, 2pt]{(A)}$$

解答:$$\begin{vmatrix} 0& a& b\\ c&0 & d\\ e& f& 0\end{vmatrix} =bcf+ade 為偶數\Rightarrow ade 為偶數且 bcf為偶數  \Rightarrow\\ \begin{array}{cc|c}(ade) & (bcf)& 數量 \\\hline (213)& (465) & 3!\cdot 3!=36 \\ (215)& (463) & 3!\cdot 3!=36 \\ (235)& (461)& 3!\cdot 3!=36\\\hdashline (4--) &(26-) & 36\\ & & 36\\ & & 36\\\hdashline (6--) & (24 -) & 36\\ & & 36\\ & & 36\\\hline\end{array} \Rightarrow 小計36\times 9=324 \\\Rightarrow (ade),(bcf)互換\Rightarrow 324\times 2=648 \Rightarrow 機率={648\over 6!}= {648\over 720} ={9\over 10},故選\bbox[red, 2pt]{(D)}$$
解答:$$S:2x-5y+4z=14 \Rightarrow 法向量\vec n=(2,-5,4) \Rightarrow 過P(1,9,3)且方向向量為\vec n的直線\\ L:{x-1\over 2} ={y-9\over -5}={z-3\over 4}  \Rightarrow T\in L \Rightarrow T(2t+1,-5t+9,4t+3) \Rightarrow Q\in S \\ \Rightarrow 2(2t+1)- 5(-5t+9)+ 4(4t+3)=14 \Rightarrow 45t=45 \Rightarrow t=1 \Rightarrow T(3,4,7) \\\Rightarrow T={1\over 2}(P+Q) \Rightarrow Q=2T-P =(6,8,14)-(1,9,3)=(5,-1,11),故選\bbox[red, 2pt]{(A)}$$
解答:$$圓C\cases{右頂點(2.1\pi,0), 2.1\pi \lt {9\pi\over 4} \\ 左頂點(-0.1\pi, 0), -0.1\gt -{\pi\over 4}} \Rightarrow 圓與五條\tan (2x)線條相交, 因此共10個交點,故選\bbox[red, 2pt]{(C)}$$



二、 多選題(40 分):

解答:$$(A) \bigcirc:\cases{A(-3,-2,1) \\ B(-2,4,3) \\ C(2,-1,3)} \Rightarrow \cases{\overrightarrow{AB} =(1,6,2) \\ \overrightarrow{AC} =(5,1,2)} \Rightarrow \overrightarrow{AB} \times \overrightarrow{AC} =(10,8,-29) \\(B)\times: {1\over 2}|(10,8,-29)|= {1\over 2} \sqrt{100+64+841} ={1\over 2} \sqrt{1005} \\(C)\times: \overrightarrow{AD} =(2,5,3) \Rightarrow |\overrightarrow{AD} \cdot  (\overrightarrow{AB} \times \overrightarrow{AC})|= |(2,5,3) \cdot (10,8,-29)|=27 \ne 102 \\(D) \times:{1\over 6}\times 27 ={9\over 2}\ne 34 \\(E)\times: 平面E=\triangle ABC:10(x+3)+8(y+2)-29(z-1)=0 \Rightarrow 10x+8y-29z+75=0 \\ \Rightarrow D(-1,3,4)至E的距離={27 \over \sqrt{1005}} ={9\sqrt{1005} \over 335} \ne {17\sqrt{1005} \over 335}\\,故選\bbox[red, 2pt]{(A)}, 但公布的答案是\bbox[cyan,2pt]{ACE}$$
解答:$$(A)\bigcirc: \cases{A(1,1,1) \\ B(1,2,3) \\C(3,3,0)} \Rightarrow \cases{\overline{AB}= \sqrt 5\\ \overline{BC} = \sqrt{14}\\ \overline{AC} =3} \Rightarrow \overline{BC}^2= \overline{AB}^2 +\overline{AC^2} \Rightarrow \angle A為直角 \\(B) \times:\cases{A'(1,1,0) \\B'(1,2,0) \\C'(3,3,0)} \Rightarrow \cases{\overline{A'B'}=1\\ \overline{B'C'} =\sqrt 5\\ \overline{A'C'} =2\sqrt 2} \Rightarrow 最長邊\overline{A'C'} \Rightarrow 最大角\angle B' \Rightarrow \cos B'={1+5-8\over 2\sqrt 5} \lt 0 \\\quad \Rightarrow \angle B'為鈍角 \\(C) \bigcirc: \cases{\overrightarrow{AB}= (0,1,2) \\\overrightarrow{AC} =(2,2,-1)} \Rightarrow \triangle ABC面積={1\over 2}|\overrightarrow{AB} \times \overrightarrow{AC}| ={1\over 2} |(-5,4,-2)|={1\over 2}\sqrt{45} ={3\over 2}\sqrt 5 \\(D) \times:\cases{\overrightarrow{A'B'}= (0,1,0) \\\overrightarrow{A'C'} =(2,2,0)} \Rightarrow \triangle A'B'C' 面積={1\over 2}|\overrightarrow{A'B'} \times \overrightarrow{A'C'}| ={1\over 2} |(0,0,-2)|=1\ne 2 \\(E)\bigcirc: \cases{平面ABC的法向量\vec u=(-5,4,-2) \\xy平面法向量\vec v=(0,0,1)} \Rightarrow \cos \theta={\vec u\cdot \vec v\over |\vec u|| \vec v} ={-2\over 3\sqrt 5} \Rightarrow \sin \theta= {\sqrt{41} \over 3\sqrt 5}\\,故選\bbox[red, 2pt]{(ACE)}$$
解答:$$(A)\bigcirc: \det(A)=3b-8a=-4 \Rightarrow 8a-3b=4\\(B)\times: AB= \begin{bmatrix} 3& 8\\ a& b\end{bmatrix} \begin{bmatrix} 5& c\\ 9& d\end{bmatrix} = \begin{bmatrix} 87& 3c+8d\\ 5a+9b& ac+bd\end{bmatrix} = \begin{bmatrix} 87& -27\\ 46& -4\end{bmatrix} \Rightarrow \cases{3c+8d=-27 \cdots(1)\\ 5a+9b=46 \cdots(2)\\ ac+bd=-4 \cdots(3)} \\\quad \Rightarrow (1)+(2) =8a+9b+3c +8d=-27+46=19 \ne -19 \\(C) \times: \begin{vmatrix}b&c\\a&-d \end{vmatrix} =-bd-ac=4 \ne -4 \\(D) \times: \begin{bmatrix} 3& 8\\ a& b\end{bmatrix} \begin{bmatrix} b& -8\\ -a& 3\end{bmatrix} = \begin{bmatrix} 3b-8a &0\\ 0& -8a+3b\end{bmatrix} = \begin{bmatrix} -4&0\\ 0& -4\end{bmatrix}=-4I \ne I \\(E) \bigcirc:\begin{bmatrix} b& -8\\ -a& 3\end{bmatrix} \begin{bmatrix} 3& 8\\ a& b\end{bmatrix} = \begin{bmatrix} 3b-8a & 0\\ 0& -8a+3b\end{bmatrix} = \begin{bmatrix} -4&0 \\0& -4\end{bmatrix} =-4I\\,故選\bbox[red, 2pt]{(AE)}$$



解答:$$(A)\times: \bar x=10= {1\over 8}(x_1+x_2+ \cdots+x_8) \Rightarrow x_1+x_2 + \cdots+ x_8=80 \ne 90 \\(B) \bigcirc: 標準差=4=\sqrt{f(10)\over 8} \Rightarrow f(10) =16\times 8=128\\ (C)\bigcirc: 4^2= {x_1^2+x_2^2+ \cdots+ x_8^2\over 8} -10^2 \Rightarrow x_1^2+x_2^2+ \cdots+ x_8^2=116\times 8= 928\\(D)\times:題意不清 \\(E)\times: 假設x_1\le x_2\le \cdots \le x_8且\cases{x_3=8\\ x_4=x_5= x_6=9}, 若x_3由8更正為10, 中位數仍為9\\,故選\bbox[red, 2pt]{(BC)}$$

解答:$$(A)\bigcirc: \cases{ \begin{bmatrix}a& b\\ c& d \end{bmatrix} \begin{bmatrix} 1\\ 0\end{bmatrix} =\begin{bmatrix} 3\\ \sqrt 3 \end{bmatrix} \Rightarrow \cases{a=3\\ c=\sqrt 3} \\\begin{bmatrix}a& b\\ c& d \end{bmatrix} \begin{bmatrix} 0\\ 1\end{bmatrix} =\begin{bmatrix} -\sqrt 3\\   3 \end{bmatrix} \Rightarrow \cases{b=-\sqrt 3\\ d=  3}} \Rightarrow \begin{vmatrix} a& b\\ c& d\end{vmatrix} =\begin{vmatrix} 3& -\sqrt 3\\ \sqrt 3& 3\end{vmatrix} =12 \\(B) \times: C(x,y)= (\cos \theta, \sin \theta) \Rightarrow \begin{bmatrix}x'\\ y' \end{bmatrix} = \begin{bmatrix} 3& -\sqrt 3\\ \sqrt 3& 3 \end{bmatrix} \begin{bmatrix} \cos \theta\\ \sin \theta\end{bmatrix} = \begin{bmatrix} 3\cos \theta-\sqrt 3\sin \theta\\ \sqrt 3\cos \theta+3\sin \theta\end{bmatrix} \\\quad \Rightarrow \overline{OC'} =\sqrt{(3\cos \theta-\sqrt 3\sin \theta)^2 +(\sqrt 3\cos \theta+3 \sin \theta)^2} =\sqrt{12}=2\sqrt 3 \ne 2\sqrt 2 \\(C) \times: \cos \alpha={\overrightarrow{OC} \cdot \overrightarrow{OC'} \over |\overrightarrow{OC}||\overrightarrow{OC'}|} ={(\cos \theta,\sin \theta)\cdot (3\cos \theta-\sqrt 3\sin \theta, \sqrt 3\cos \theta+ 3\sin \theta) \over 1\cdot 2\sqrt 3} ={\sqrt 3\over 2} \\\quad \Rightarrow \overrightarrow{OC}與\overrightarrow{OC'}夾角 \alpha=30^\circ \ne 60^\circ \\(D)\times: 若\theta=220^\circ , 再加上30^\circ=250^\circ,則x'\not \lt y' \\(E)\bigcirc: y=y' \Rightarrow \sqrt 3\cos \theta+ 3\sin \theta= \sin \theta \Rightarrow \tan \theta=-{\sqrt 3\over 2} \\\quad \Rightarrow 只要取\theta=\tan^{-1}(-{\sqrt 3\over 2}) \Rightarrow y=y'\\,故選\bbox[red, 2pt]{(AE)}$$
解答:$$(A)\times: x^2+y^2+4x-6y+16=0 \Rightarrow (x+2)^2+(y-3)^2=-3 \;無實數解,不是圓\\ (B)\times: 圓心(3,-1)至直線3x+y+4=0的距離為\sqrt{10} \lt 半徑\sqrt{12} \Rightarrow 有兩個交點 \\(C)\bigcirc:圓心(-2,1)至直線x+2y+1=0的距離為{1\over \sqrt 5} \lt 半徑1 \Rightarrow 有兩個交點 \\(D)\bigcirc: x^2+y^2 -4kx+4y+4k^2-4=0 \Rightarrow (x-2k)^2+ (y+2)^2=8 \Rightarrow \cases{圓心P(2k,-2) \\ 圓半徑r=2\sqrt 2} \\\quad \Rightarrow P至x軸距離=2 \lt r \Rightarrow 有兩個交點 \\(E)\times: 與x,y軸皆相切的圓:(x-a)^2+(y-a)^2 =a^2 通過(2,1) \Rightarrow (2-a)^2+(1-a)^2=a^2 \\ \quad \Rightarrow a^2-6a+5=0 \Rightarrow(a-5)(a-1)=0 \Rightarrow a=1,5 \Rightarrow 不只一個圓\\,故選\bbox[red, 2pt]{(CD)}$$

解答:$$(A) \times:\cases{2y-z=3\\ 3x+y+4z=2\\ -4y+2z=-6} \Rightarrow \cases{x+3z/2=1/6\\ y-z/2=3/2} \Rightarrow 無限多組解\\ (B) \times: \cases{4x-y=7\\ -2x+3y=-1\\ 5x+2y=12} \Rightarrow \cases{x=2\\ y=1\\ z為任意值}\Rightarrow 無限多組解\\(C)\times: \cases{x+4y-3z=2\\ 2y-z=3\\ -2x-6y+5z=-1} \Rightarrow \cases{x-z=-4\\ y-z/2=3/2} \Rightarrow 無限多組解 \\(D)\bigcirc: \cases{3x-2y=16\\ 4x-2z=0\\ 5z=0} \Rightarrow 唯一解\cases{x=0\\ y=-8\\ z=0}\\(E)\bigcirc: \cases{4x-3y+2z=8\\ -2y+z=3\\ 5z=-4} \Rightarrow 唯一解\cases{x=39/40\\ y=-19/10\\ z=-4/5}\\,故選\bbox[red, 2pt]{(DE)}$$

解答:$$(A)\bigcirc: f(2\pi/3)={3\over 4}-1=-{1\over 4} \\(B) \times:f(x)為一函數, 不可能對稱x軸 \\(C) \bigcirc: f(-x)=f(x) \\(D) \bigcirc:f(x)為週期函數,與x軸有無限多點 \\(E) \bigcirc: f'(x)=-3\sin(2x) \Rightarrow f'(x)\le 0, {6\over 5}\pi \le x\le {8\over 5}\pi \Rightarrow f(x)遞減\\,故選\bbox[red, 2pt]{(ACDE)}$$


============================= END ========================
解題僅供參考,其他轉學考試題及詳解




沒有留言:

張貼留言