(一)假設隨機變數 \begin{cases}X_1:九點到十點的顧客人數\\X_2:十一點到十二點的顧客人數\end{cases} \\ \begin{cases}H_0:\mu_1=\mu_2 \\ H_1:\mu_1 \ne \mu_2 \\ \alpha=0.05\end{cases} \Rightarrow 拒絕區域R=\{Z\mid |Z|>Z_{\alpha/2=0.025}=1.96\} \\ 檢定統計量Z= \frac{ \big( \overline{X_1}- \overline{X_2} \big)- \big(\mu_1-\mu_2\big) }{ \sqrt{ \frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} } } = \frac{ \big( 75.4- 91.3 \big)- (0) }{ \sqrt{ \frac{20.4^2}{30} + \frac{22.1^2}{30} } } =-2.896\in R \\ \Rightarrow 拒絕H_0 \Rightarrow 兩時段顧客平均人數\bbox[red, 2pt]{不同}
(二)顧客被服務的總時數\bbox[red, 2pt]{大於}服務人員的總服務時間
解:
解:
(一)P(X>75)=0.27 \Rightarrow P(X\le 75)=1-0.27=0.73 \Rightarrow P\left( Z\le \frac{75-70}{\sigma_甲} \right)=0.73\\ 查表可知Z_{0.73}\approx 0.61 \Rightarrow \frac{75-70}{\sigma_甲}=0.61 \Rightarrow \sigma_甲=\frac{75-70}{0.61}\approx \bbox[red, 2pt]{8.2}(二)\sigma_乙=1.2\times \sigma_甲=1.2\times 8.2= 9.84 \Rightarrow P(X>75) = P\left( Z> \frac{75-68}{\sigma_乙} \right)= P\left( Z> \frac{75-68}{9.84} \right)\\ = P(Z>0.711) = 1-P(Z\le 0.711)\approx 1-0.76(查表z_{0.71}=0.761148)=0.24=\bbox[red, 2pt]{24\%}
考選部未公布答案,解題僅供參考
沒有留言:
張貼留言