使用萊布尼茲積分法則(Leibniz Integral Rule)來求解
$$F(x)= \int_{\sin x}^{\cos x} e^{t^2+xt}dt \\ \Rightarrow F'(x)= \int_{\sin x}^{\cos x} \frac{\partial}{\partial x} e^{t^2+xt}dt +e^{\cos^2x+x\cos x} \frac{d}{d x} \cos x- e^{\sin^2x+x\sin x}\frac{d}{d x} \sin x \\= \int_{\sin x}^{\cos x} t e^{t^2+xt}dt - \sin xe^{\cos^2x+x\cos x}- \cos xe^{\sin^2x+x\sin x} \\ \Rightarrow F'(0)=\int_0^1 te^{t^2}dt-0-e^0 = \int_0^1 te^{t^2}dt-1 = \left. \left[ \frac{1}{2}e^{t^2}\right] \right|_0^1-1\\ =\frac{1}{2}(e^1-e^0)-1= \bbox[red, 2pt]{\frac{1}{2}e-\frac{3}{2}}$$
解:
解:$$\frac{x^2}{9} + \frac{y^2}{16} =1 \Rightarrow \begin{cases} x = 3\cos \theta\\ y=4\sin \theta\end{cases} ,0\le \theta\le 2\pi \\ \Rightarrow P(3\cos \theta, 4\sin \theta)至L:x+y=6 的距離\quad d(P,L)= \left| \frac{3\cos \theta+4\sin \theta-6}{ \sqrt{1+1} } \right|\\ =\left| \frac{5(\frac{3}{5}\cos \theta+\frac{4}{5}\sin \theta)-6}{ \sqrt{2} } \right|= \left| \frac{5\sin(\theta+\alpha)-6}{ \sqrt{2} } \right| \Rightarrow \frac{1}{ \sqrt{2} }\le d(P,L)\le \frac{11}{ \sqrt{2} } \\ \Rightarrow 最短距離為\bbox[red, 2pt]{\frac{1}{ \sqrt{2} }}$$
解:
$$y= \frac{x^3}{12} + \frac{1}{x} \Rightarrow y'=\frac{x^2}{4} - \frac{1}{x^2 } \Rightarrow (y')^2= \frac{x^4}{16} - \frac{1}{2} + \frac{1}{x^4}\\ \Rightarrow 曲線長度= \int_1^4 \sqrt{1+(y')^2} dx=\int_1^4 \sqrt{ \frac{x^4}{16} + \frac{1}{2} + \frac{1}{x^4}} dx= \int_1^4 \sqrt{ (\frac{x^2}{4} + \frac{1}{x^2})^2}dx\\ = \int_1^4 \left(\frac{x^2}{4} + \frac{1}{x^2}\right) dx =\left. \left[ \frac{x^3}{12}- \frac{1}{x}\right] \right|_1^4 =\left( \frac{16}{3} -\frac{1}{4} \right)- \left( \frac{1}{12} -1\right)= \bbox[red, 2pt]{\frac{18}{3}}$$
解:
(一)$$令 \begin{cases}u = \cos^{n-1}x\\dv=\cos{x}dx\end{cases} \Rightarrow 令 \begin{cases}du = (n-1)\cos^{n-2}x(-\sin{x})dx\\ v=\sin{x}\end{cases}\\ \Rightarrow \int \cos^n{x}\;dx= uv-\int vdu = \sin{x}\cos^{n-1}x+ (n-1)\int \sin^2{x}\cos^{n-2}{x}\;dx \\= \sin{x}\cos^{n-1}x+ (n-1)\int (1-\cos^2{x})\cos^{n-2}{x}\;dx \\ = \sin{x}\cos^{n-1}x+ (n-1)\int \cos^{n-2}{x}\;dx -(n-1)\int \cos^n{x}\;dx \\ \Rightarrow n\int \cos^n(x)\;dx = \sin{x}\cos^{n-1}x+ (n-1)\int \cos^{n-2}{x}\;dx\\ \Rightarrow \int \cos^n{x}\;dx = \frac{\sin{x}\cos^{n-1}x} {n} + \frac{n-1}{n} \int \cos^{n-2}{x}\;dx,\text{for }n\ge 2\\ 故得證。$$(二)$$\int_0^{\pi/2}{\cos^{10}x\;dx}= \left.\left[\frac{\cos^9{x}\sin{x}}{10}\right]\right|_0^{\pi/2} + \frac{9}{10} \int_0^{\pi/2} \cos^8{x}\;dx =\frac{9}{10} \int_0^{\pi/2} \cos^8{x}\;dx \\ =\frac{9}{10}\left( \left. \left[ \frac{\cos^7{x}\sin{x}}{8}\right]\right|_0^{\pi/2} +\frac{7}{8}\int_0^{\pi/2}\cos^6{x}\;dx \right) = \frac{9}{10} \cdot \frac{7}{8}\int_0^{\pi/2}\cos^6{x}\;dx \\ =\frac{9}{10} \cdot \frac{7}{8} \left( \left. \left[ \frac{\cos^5{x}\sin{x}}{6}\right]\right|_0^{\pi/2} +\frac{5}{6}\int_0^{\pi/2} \cos^4{x}\;dx \right) = \frac{9}{10} \cdot \frac{7}{8}\cdot \frac{5}{6}\int_0^{\pi/2} \cos^4{x}\;dx \\ = \frac{9}{10} \cdot \frac{7}{8}\cdot \frac{5}{6} \left( \left. \left[ \frac{\cos^3{x}\sin{x}}{4}\right]\right|_0^{\pi/2} +\frac{3}{4}\int_0^{\pi/2} \cos^2{x}\;dx \right) = \frac{9}{10} \cdot \frac{7}{8}\cdot \frac{5}{6} \cdot \frac{3}{4}\int_0^{\pi/2} \cos^2{x}\;dx \\ = \frac{9}{10} \cdot \frac{7}{8}\cdot \frac{5}{6} \cdot \frac{3}{4}\left( \left. \left[ \frac{\cos{x}\sin{x}}{4}\right]\right|_0^{\pi/2} +\frac{1}{2}\int_0^{\pi/2} \cos^0{x}\;dx \right) \\= \frac{9}{10} \cdot \frac{7}{8}\cdot \frac{5}{6} \cdot \frac{3}{4}\cdot \frac{1}{2}\int_0^{\pi/2} 1\;dx =\frac{9}{10} \cdot \frac{7}{8}\cdot \frac{5}{6} \cdot \frac{3}{4}\cdot \frac{1}{2} \cdot \frac{\pi}{2} = \bbox[red, 2pt]{\frac{63}{512} \pi}$$
解:
$$\begin{cases}y=x^2+1\\ y=2x+1 \end{cases} \Rightarrow 交點 \begin{cases}P(0,1)\\ Q(2,5)\end{cases} ,圖形見上;\\D=\pi\int_0^2(2x+1)^2-(x^2+1)^2\;dx =\pi\int_0^2-x^4+2x^2+4x\;dx =\pi \left. \left[ -\frac{1}{5}x^5+ \frac{2}{3}x^3 +2x^2 \right] \right|_0^2 \\ =\pi \left( -\frac{32}{5} + \frac{16}{3} +8 \right) = \bbox[red, 2pt]{\frac{104}{15}\pi}$$
解:
$$y= \sqrt{4-x^2} \Rightarrow y'= \frac{-x}{ \sqrt{4-x^2} } \Rightarrow (y')^2= \frac{x^2}{4-x^2} \\ 旋轉曲面面積=2\pi \int_{-1}^1 y\sqrt{1+(y')^2}dx =2\pi \int_{-1}^1 \sqrt{4-x^2}\sqrt{1+\frac{x^2}{4-x^2}}dx \\ =2\pi \int_{-1}^1 \sqrt{4-x^2}\sqrt{\frac{4}{4-x^2}}dx =2\pi \int_{-1}^12\;dx = \bbox[red, 2pt]{8\pi}$$
考選部未公布答案,解題僅供參考
請問第六題
回覆刪除y1=x^2+1
y2=2x+1
算面積時
為什麼是y2^2-y1^2
而不是(y2-y1)^2
相當於大圓面積R^2-小圓面積r^2,而不是(R-r)^2
刪除想通了 一時腦霧
刪除請問第三題
回覆刪除3/5cos sita +4/5sin sita
為何=sin(sita+alfa)
把3/5當成是sin(alpha),4/5當成是cos(alpha),就可以套公式:sin(theta+alpha)
刪除感恩您~~
刪除