2020年1月16日 星期四

105學年度高雄區公立高職聯合轉學考-升高二數學科詳解


高雄區105 學年度公立高職聯合招考轉學生
升高二數學科試題詳解
單選題
1. 在坐標平面上,若\(a>0\)且\(b<0\),則點\((ab^2,b-a)\)在第幾象限內?
(A) 一  (B) 二  (C)  三   (D)  四

$$ \begin{cases}a>0 \\ b<0  \end{cases} \Rightarrow \begin{cases}ab^2 >0 \\ b-a<0  \end{cases} \Rightarrow (正,負)在第四象限,故選:\bbox[red,2pt]{(D)}$$

2. 在\(XY\)平面上,\(P\)和\(Q\)為拋物線\(y=x^2+1\)上的兩點,若\(P\)和\(Q\)的X坐標分別是-2和3,則\(P\)和\(Q\)的距離為何?
(A) 1  (B)  2   (C) \(5\sqrt 2\)  (D)\(3\sqrt 2\)
:$$\begin{cases}P(-2, (-2)^2+1)= (-2,5)  \\ Q(3,3^2+1) =(3,10)\end{cases}  \Rightarrow \overline{PQ}= \sqrt{5^2+5^2} =5\sqrt 2, 故選\bbox[red,2pt]{(C)}$$

3. 試問\(\sin 130^\circ\)與下列哪一個三角函數值相等?
(A) \(\cos 40^\circ\)  (B) \(\sin 40^\circ\)  (C) \(\sin 230^\circ\)  (A) \(\cos 230^\circ\)

$$\sin 130^\circ = \sin 50^\circ= \cos 40^\circ, 故選\bbox[red,2pt]{(A)}$$

4. 設\(\theta\)為第三象限角,若\(\tan \theta = \sqrt 2\),試求\(\sqrt 6 \sin \theta +\sqrt 3\cos \theta\)= ?
(A)-2   (B) -3   (C) \(-2 \sqrt 2\)  (D) \(-2\sqrt 3\)
:$$\tan \theta =\sqrt 2\Rightarrow  \begin{cases}\sin \theta = -\sqrt 2/\sqrt 3  \\ \cos \theta =-1 /\sqrt 3\end{cases}  \Rightarrow \sqrt 6 \sin \theta +\sqrt 3\cos \theta = -2 -1 = -3, 故選\bbox[red,2pt]{(B)}$$


$$5. 已知\tan \theta = {3\over 4},則{2\sin \theta-\cos\theta \over 3\cos \theta+\sin \theta}=?\\(A){2\over 3}\qquad(B){2\over 15}\qquad (C)12\qquad (D)32 \\
\color{blue}{\textbf{解}}:\\
\tan \theta = {3\over 4} \Rightarrow  \begin{cases}\sin \theta=3/5 \\ \cos \theta =4/5\end{cases}  \Rightarrow {2\sin \theta-\cos\theta \over 3\cos \theta+\sin \theta}= {6/5-4/5 \over 12/5+3/5} ={2/5 \over 3} ={2\over 15}, 故選\bbox[red,2pt]{(B)}$$


$$6. 若A(2,-3)、B(-4,1)及C(x,y)為平面上三點,且3\overrightarrow{BC} =2 \overrightarrow{AC},則(x,y)為何?\\(A)(16,-9)\qquad(B)(-16,9)\qquad (C)(-9,16)\qquad (D)(16,-9) \\
\color{blue}{\textbf{解}}:\\
 \begin{cases}A(2,-3) \\ B(-4,1) \\ C(x,y)\end{cases}  \Rightarrow \begin{cases} \overrightarrow{BC} =(x+4,y-1) \\ \overrightarrow{AC} =(x-2,y+3)\end{cases}  \Rightarrow 3\overrightarrow{BC} =2 \overrightarrow{AC} \Rightarrow (3x+12, 3y-3)= (2x-4,2y+6)\\ \Rightarrow \begin{cases} x=-16 \\ y=9\end{cases}, 故選\bbox[red,2pt]{(B)}$$


$$7. 設\vec u,\vec v為平面上的兩個單位向量,若其內積為-{1\over \sqrt 2},則\vec u與\vec v的夾角為何?\\(A)30^\circ \qquad(B)45^\circ \qquad (C)120^\circ \qquad (D)135^\circ \\
\color{blue}{\textbf{解}}:\\
\vec u\cdot \vec v=|\vec u||\vec v|\cos \theta \Rightarrow -{1\over \sqrt 2}= 1\times 1\times \cos \theta  \Rightarrow \cos \theta= -{1\over \sqrt 2} \Rightarrow \theta =135^\circ, 故選\bbox[red,2pt]{(D)}$$

$$8. 已知平面三向量\vec a=(3,4),\vec b=(x,-9), \vec c=(-8,y)。設\vec a\bot \vec b且\vec b//\vec c,則3x-2y之值為何?\\(A)-18 \qquad(B)-6 \qquad (C)24 \qquad (D)18 \\
\color{blue}{\textbf{解}}:\\
\vec a \bot \vec b \Rightarrow \vec a\cdot \vec b=0 \Rightarrow 3x-36=0 \Rightarrow x=12;\\又\vec b//\vec c \Rightarrow {x \over -8}= {-9 \over y} \Rightarrow {12 \over -8}={-9 \over y} \Rightarrow y=6 \Rightarrow 3x-2y=36-12 =24,故選\bbox[red,2pt]{(C)} $$

$$9. 求(x^3-2x^2+3x+1) (x^2-x+1)的展開式中,x^3項的係數為何?\\(A)4 \qquad(B)5 \qquad (C)6 \qquad (D)7 \\
\color{blue}{\textbf{解}}:\\
1\times 1+(-2)\times (-1)+3\times 1 =6,故選\bbox[red,2pt]{(C)} $$

$$10. 用x^2-x-1去除2x^3-3x^2+3x-4得到的餘式為何?\\(A)-x-4 \qquad(B)x+4 \qquad (C)-4x-5 \qquad (D)4x-5 $$


$$利用長除法,如上圖,故選\bbox[red,2pt]{(D)}$$

$$11. 設x-1和x+1為多項式x^5+ax^4+bx^3-5x^2+2x-3的因式,則3a-b項的係數為何?\\(A)-27 \qquad(B)27 \qquad (C)-13 \qquad (D)13 \\
\color{blue}{\textbf{解}}:\\
令f(x)=x^5+ax^4+bx^3-5x^2+2x-3 \Rightarrow \begin{cases}f(1)=0\\ f(-1)=0 \end{cases} \Rightarrow \begin{cases}1+a+b-5+2-3=0\\ -1+a-b-5-2-3=0 \end{cases} \\\Rightarrow \begin{cases}a+b =5\\ a-b=11 \end{cases} \Rightarrow \begin{cases}a=8\\ b=-3 \end{cases} \Rightarrow 3a-b=24+3=27,故選\bbox[red,2pt]{(B)}$$



$$12. 設x、y、k均為實數,若|x-1|+|2x+y-4|+ |x-2y+k|=0則k值為何?\\(A)3 \qquad(B)2 \qquad (C)-3 \qquad (D)-2 \\

\color{blue}{\textbf{解}}:\\

|x-1|+|2x+y-4|+ |x-2y+k|=0 \Rightarrow \begin{cases} x-1=0\\ 2x+y-4=0 \\ x-2y+k=0\end{cases} \Rightarrow \begin{cases}x=1\\ 2+y-4=0 \\ 1-2y+k=0 \end{cases} \\ \Rightarrow \begin{cases}y=2 \\ 1-4+k=0 \end{cases} \Rightarrow k=3,故選\bbox[red,2pt]{(A)}$$

$$13. 設a、b、c、d、e、f均為實數,若行列式\begin{vmatrix}a & 1 & d\\ b & 1 &e \\c & 1 & f \end{vmatrix}=-3,則\begin{vmatrix} -3a & 2 & d\\ -3b & 2 &e \\15c & -10 & -5f \end{vmatrix}=?\\(A)90 \qquad(B)-90 \qquad (C)240 \qquad (D)-240 \\

\color{blue}{\textbf{解}}:\\

\begin{vmatrix}a & 1 & d\\ b & 1 &e \\c & 1 & f \end{vmatrix}=-3 \Rightarrow \begin{vmatrix}-3a & 1 & d\\ -3b & 1 &e \\ -3c & 1 & f \end{vmatrix}= (-3)\times (-3)=9 \Rightarrow \begin{vmatrix}-3a & 2 & d\\ -3b & 2 &e \\ -3c & 2 & f \end{vmatrix}= 9\times 2=18 \\\Rightarrow \begin{vmatrix}-3a & 2 & d\\ -3b & 2 &e \\ 15c & -10 & -5f \end{vmatrix}= 18\times (-5) =-90,故選\bbox[red, 2pt]{(B)}$$
$$14. 二階行列式\begin{vmatrix}-4 & 5 \\ -2 & 3 \end{vmatrix}=?\\(A)-110 \qquad(B)-2 \qquad (C)2 \qquad (D)110 \\
\color{blue}{\textbf{解}}:\\
\begin{vmatrix}-4 & 5 \\ -2 & 3 \end{vmatrix}= -12+10=-2 ,故選\bbox[red, 2pt]{(B)}$$



$$\begin{cases} f(x,y)=3x+y \\ A(2,2) \\B(1,4) \\C(3,6) \\ D(5,3)\end{cases} \Rightarrow \begin{cases} f(A)=8 \\ f(B)=7 \\ f(C)=15 \\ f(D)=18 \end{cases} \Rightarrow \begin{cases} 最大值18 \\ 最小值7 \end{cases},故選\bbox[red,2pt]{(C)}$$



$$\begin{cases} 原點在x+y-9=0的內側\Rightarrow x+y-9\le 0 \\ 原點在x-4y+1=0的外側 \Rightarrow x-4y+1\le 0 \\ 原點在2x-3y-3=0的外側 \Rightarrow 2x-3y-3\ge 0\end{cases} ,故選\bbox[red,2pt]{(C)}$$

$$17. 下列何者為不等式3x^2+3x \ge 6之解?\\(A)x\le -2或x\ge 1 \qquad(B)-2\le x\le 1 \qquad (C)-1\le x\le 2 \qquad (D)x\le -1 或x\ge 2 \\


\color{blue}{\textbf{解}}:\\

3x^2+3x \ge 6 \Rightarrow x^2+x-2 \ge 0 \Rightarrow (x+2)(x-1)\ge 0 \Rightarrow x\le -2或x\ge 1,故選\bbox[red, 2pt]{(A)}$$

$$18. 設A(-1,2)、B(7,-2)為平面上二點,若點P(m,n)在線段\overline{AB}上且\overline{AP}:\overline{PB} =3:1,\\則m+n之值為何?(A)2 \qquad(B)2.5 \qquad (C)4 \qquad (D)4.5 \\
\color{blue}{\textbf{解}}:\\
\begin{cases} m={-1+3\times 7 \over 3+1} =5\\ n={2+3\times (-2) \over 3+1} = -1 \end{cases} \Rightarrow m+n =4,故選\bbox[red, 2pt]{(C)} $$


:$$ y=x^2+ax-b =(x+1)(x-2) =x^2-x-2 \Rightarrow  \begin{cases} a= -1\\ b=2\end{cases} \Rightarrow  a+b=1 ,故選\bbox[red,2pt]{(B)}$$


$$20. 設\vec a=(4,3),\vec b=(x,y)為平面上兩向量且4x^2+9y^2=40,則此二向量內積\vec a \cdot \vec b的最大值為何?\\(A)12\sqrt 3 \qquad(B)10\sqrt 3 \qquad (C)12\sqrt 2 \qquad (D)10\sqrt 2 \\
\color{blue}{\textbf{解}}:\\
\vec a \cdot \vec b=4x+3y  \Rightarrow ((2x)^2+ (3y)^2)(2^2+1^2) \ge (4x+3y)^2 \Rightarrow 40\times 5 \ge (\vec a\cdot \vec b)^2 \\ \Rightarrow  (\vec a\cdot \vec b)^2\le 200 \Rightarrow -10\sqrt 2\le \vec a\cdot \vec b\le 10\sqrt 2,故選\bbox[red, 2pt]{(D)}$$


$$21. 不等式|5x+1|<11的解為何?\\(A)-{12\over 5} < x< 2 \qquad(B)x < -{3\over 2}或x > 2 \qquad (C)-2< x< {12\over 5} \qquad (D)x <-2 或x> {3\over 2} \\
\color{blue}{\textbf{解}}:\\
|5x+1|<11  \Rightarrow -11< 5x+1 < 11 \Rightarrow -12< 5x < 10 \Rightarrow -{12\over 5} < x < 2,故選\bbox[red, 2pt]{(A)}$$


$$22. 下列方程式何者沒有實數解?\\(A)x^2+x+1=0 \qquad(B)x^2+x-1=0 \qquad (C)x^2+4x+4=0 \qquad (D)x^2-4x+4 \\
\color{blue}{\textbf{解}}:\\
x^2+x+1=0 判別式為1-4=-3<0  \Rightarrow 無實數解,故選\bbox[red, 2pt]{(A)}$$


$$23. 分式方程式{-1 \over 3x+1} ={2\over x-9}的解為何?\\(A)1 \qquad(B)2 \qquad (C)3 \qquad (D)4 \\
\color{blue}{\textbf{解}}:\\
{-1 \over 3x+1} ={2\over x-9}  \Rightarrow -(x-9)=2(3x+1) \Rightarrow -x+9=6x+2 \Rightarrow x=1,故選\bbox[red, 2pt]{(A)}$$


$$24. \sec^2 240^\circ +\tan 135^\circ=\\(A)-1 \qquad(B)1 \qquad (C)-{3\over 4} \qquad (D)3 \\
\color{blue}{\textbf{解}}:\\
\sec^2 240^\circ +\tan 135^\circ= \sec^2 60^\circ-\tan 45^\circ = 4- 1  =3,故選\bbox[red, 2pt]{(D)}$$


$$25. \sin^2 240^\circ +\cos^2 600^\circ +\csc^2 1680^\circ -\cot^2 2220^\circ=\\(A)-1 \qquad(B)0 \qquad (C)1 \qquad (D)2 \\
\color{blue}{\textbf{解}}:\\
\sin^2 240^\circ +\cos^2 600^\circ +\csc^2 1680^\circ -\cot^2 2220^\circ= \sin^2 60^\circ +\cos^2 60^\circ +\csc^2 60^\circ -\cot^2 60^\circ \\= {3\over 4}+{1\over 4} +{4\over 3}-{1\over 3}=2,故選\bbox[red, 2pt]{(D)}$$


解題僅供參考

沒有留言:

張貼留言