新竹市立建功高中107學年度第一次正式教師甄試國中數學科
一、填充題:【20 題,每題 4 分,共計 80 分】
解答:¯AB:¯AC:¯BC=3:4:5⇒{¯AB=3k¯AC=4k¯BC=5k,k∈R¯BD為∠B的角平分線⇒¯AD¯DC=¯AB¯BC=3k5k⇒{¯AD=¯AB¯AB+¯BCׯAC=38×4k=32k¯DC=4k−32k=52k;同理,¯AF¯FB=¯CA¯CB=4k5k⇒{¯AF=¯CA¯CA+¯CBׯAB=49×3k=43k¯FB=3k−43k=53k;又{△CED∼△CAB△BGF∼△BAC(AAA)⇒{△CED:△ABC=¯CD2:¯BC2=25/4:25△BGF:△ABC=¯BF2:¯BC2=25/9:25⇒△DEC+△FGB△ABC=25/4+25/925=1336
解答:12+14+15=1920⇒{a=2b=4c=6⇒a+b+c=12
解答:{A(−1,1)B(2018,20182)C(−2,4)D(a,a2)⇒↔AB:y=2017(x+1)+1⇒↔AB交y軸於P(0,2018)⇒↔CP:y=1007(x+2)+4代入y=x2求交點⇒x2−1007x−2018=0⇒(x−1009)(x+2)=0⇒D的x座標為1009
解答:凸160邊形內角和=180×(160−2)=28440假設內角小於160度的有n個,剩下(160−n)個內角皆小於180度因此28440<160n+180(160−n)⇒20n<360⇒n<18⇒n=17
解答:x=n+y,其中n∈N,0≤b<1⇒x2+y2=2018⇒x2=2018−y2⇒2017<x2<2018⇒√2017<x<√2018⇒n=44⇒x=44+y⇒(44+y)2+y2=2018⇒y2+44y−41=0⇒y=−22+5√21⇒x=44+(−22+5√21)=22+5√21
解答:令{⟨an⟩公比為ra⟨bn⟩公比為rb⇒an+bn=(ra+rb)(an−1+bn−1)−rarb(an−2+bn−2)因此{86=(ra+rb)⋅(−4)−rarb⋅2471=(ra+rb)⋅86−rarb⋅(−4)⇒{ra+rb=1rarb=−154⇒a5+b5=1⋅71+154⋅86=39312
解答:恰好只走一圈:5奇或1偶3奇或2偶1奇,機率為(12)5+C43(12)4+C32(12)3=2132
解答:
解答:{A(−1,1)B(2018,20182)C(−2,4)D(a,a2)⇒↔AB:y=2017(x+1)+1⇒↔AB交y軸於P(0,2018)⇒↔CP:y=1007(x+2)+4代入y=x2求交點⇒x2−1007x−2018=0⇒(x−1009)(x+2)=0⇒D的x座標為1009
解答:凸160邊形內角和=180×(160−2)=28440假設內角小於160度的有n個,剩下(160−n)個內角皆小於180度因此28440<160n+180(160−n)⇒20n<360⇒n<18⇒n=17
解答:x=n+y,其中n∈N,0≤b<1⇒x2+y2=2018⇒x2=2018−y2⇒2017<x2<2018⇒√2017<x<√2018⇒n=44⇒x=44+y⇒(44+y)2+y2=2018⇒y2+44y−41=0⇒y=−22+5√21⇒x=44+(−22+5√21)=22+5√21
解答:令{⟨an⟩公比為ra⟨bn⟩公比為rb⇒an+bn=(ra+rb)(an−1+bn−1)−rarb(an−2+bn−2)因此{86=(ra+rb)⋅(−4)−rarb⋅2471=(ra+rb)⋅86−rarb⋅(−4)⇒{ra+rb=1rarb=−154⇒a5+b5=1⋅71+154⋅86=39312
解答:恰好只走一圈:5奇或1偶3奇或2偶1奇,機率為(12)5+C43(12)4+C32(12)3=2132
解答:
令{¯BP=¯CQ=a¯PQ=b¯AQ=h¯AP=w,並在¯AB上找一點R,使得¯AR=¯AC=12,則△AQR≅△AQC(SAS)⇒¯QR=¯QC=a;又¯AQ為∠A的角平分線,因此¯AB:¯AC=¯BQ:¯QC⇒20:12=a+b:a⇒b=23a⇒a+b=53a{△BQR:cos∠B=(5a/3)2+82−a216(5a/3)=64+(16a2/9)80a/3⋯(1)△BAP:cos∠B=202+a2−w240a⋯(2)△BAQ:cos∠B=202+(5a/3)2−h240(5a/3)=400+(25a2/9)−h2200a/3⋯(3)由{(2)=(3)⇒h2=240−53a2(1)=(2)⇒w2=304−53a2⇒√w2−h2=√304−240=√64=8
解答:−3x−5x−7x−9x=−11x−13x⇒若111<x<19,則f(x)=(1−3)+(1−5x)+(1−7x)+(1−9x)+(11x−1)+(13x−1)=2⇒{a=1/11b=1/9c=2⇒a×b×c=299
解答:n=9+99+999+⋯+99個9⏞99⋯9=(101−1)+(102−1)+(103−1)+⋯+(10100−1)=109(10100−1)−100=109⋅100個9⏞99⋯9−100=10⋅100個1⏞11⋯1−100=100個1⏞11⋯10−100=98個1⏞11⋯1010⇒共99個1
解答:令⟨an⟩=⟨2nmod100⟩=2,4,8,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,4,8,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,…⇒從n=2起,循環數為20,因此2018=1+20×100+17⇒第17個循環數為44⇒A=22018−1的末二位數為44−1=43
解答:假設n為三位數(不可能是二位數,∵
解答:需符合\cases{a+b\gt c\\ c-a\lt b},因此(a,b,c)=(1,9,9), (2,8,9),(3,7,9),(3,8,8),(4,6,9) ,(4,7,8),\\(5,5,9), (5,6,8),(5,7,7),(6,6,7),共\bbox[red,2pt]{10}種
解答:
解答:
解答:n=9+99+999+⋯+99個9⏞99⋯9=(101−1)+(102−1)+(103−1)+⋯+(10100−1)=109(10100−1)−100=109⋅100個9⏞99⋯9−100=10⋅100個1⏞11⋯1−100=100個1⏞11⋯10−100=98個1⏞11⋯1010⇒共99個1
解答:令⟨an⟩=⟨2nmod100⟩=2,4,8,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,4,8,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,…⇒從n=2起,循環數為20,因此2018=1+20×100+17⇒第17個循環數為44⇒A=22018−1的末二位數為44−1=43
解答:假設n為三位數(不可能是二位數,∵
解答:需符合\cases{a+b\gt c\\ c-a\lt b},因此(a,b,c)=(1,9,9), (2,8,9),(3,7,9),(3,8,8),(4,6,9) ,(4,7,8),\\(5,5,9), (5,6,8),(5,7,7),(6,6,7),共\bbox[red,2pt]{10}種
解答:
解答:
ABCD為菱形\Rightarrow \overline{AC} \bot \overline{BD},並令\overline{AC} 、 \overline{BD}交點為Q,見上圖;\\並令\cases{\overline{BQ} =\overline{QD}=a \\\overline{AQ} =\overline{QC}=b \\ \overline{CP}=a},則\cases{直角\triangle AQD: a^2+b^2 =36 \cdots(1) \\ 直角\triangle PQD: a^2+(b+c)^2=81 \cdots(2)}\\ 將(1)代入(2) \Rightarrow 36+2bc+c^2=81 \Rightarrow 2bc+c^2= c(2b+c) =\overline{PC}\times \overline{AP}= \bbox[red,2pt]{45}
解答:若有\cases{x^2個A\\ 2xy個B\\y^2個C},就可以拼成邊長為(x\pi+2y)的正方形,現在\cases{x^2\le 10\\ 2xy\le 28\\ y^2\le 50}\\ \Rightarrow (x,y)=(1,1)-(1,7),(2,1)-(2,7),(3,1)-(3,4)\\ 取(x,y)=(2,7)可得最大邊長\bbox[red,2pt]{2\pi+14}
解答:
\angle F=360^\circ-90^\circ-90^\circ-45^\circ = 135^\circ ,因此令\cases{E(0,0)\\ F(0,1)\\ C(a,0)} \Rightarrow D(1,2)\\ 由於\angle C=45^\circ \Rightarrow \overleftrightarrow{CD}: y=-(x-1)+2 \Rightarrow a=3 \Rightarrow \cases{\overline{CE}=3\\ \overline{CD}=\sqrt{2^2+2^2}=2\sqrt 2} \\ \Rightarrow \cases{\triangle CDF={1\over 2}\times \sqrt 2\times 2\sqrt 2=2\\ \triangle CEF = {1\over 2}\times 1\times 3={3\over 2}} \Rightarrow DFEC面積=2+{3\over 2}= \bbox[red, 2pt]{7\over 2}
解答:f(x)=(x+1)(2x+1)(3x-1)(4x-1)-36x^4 = -12x^4+22x^3-7x^2-4x+1\\ \Rightarrow f(1)=0 \Rightarrow f(x)=(x-1)(-12x^3+10x^2+3x-1) =(x-1)g(x)\\ \Rightarrow g(1)= 0 \Rightarrow f(x)=(x-1)^2(-12x^2-2x+1) =\bbox[red, 2pt]{-(x-1)^2(12x+2x-1)}
解答:\cases{{y\over x}+ {1\over xy}={20\over 3} \\ xy+{x\over y}={5\over 3}},兩式相乘\Rightarrow y^2+{1\over y^2}={82\over 9} \Rightarrow 9y^4-82y^2+9=0 \Rightarrow (y^2-9)(9y^2-1)=0\\ \Rightarrow \cases{y=3 \Rightarrow x=1/2\\ y=-3 \Rightarrow x=-1/2\\ y=1/3\Rightarrow x=1/2\\ y=-1/3\Rightarrow x=-1/2} \Rightarrow (x,y)= \bbox[red, 2pt]{({1\over 2},3),(-{1\over 2},-3), ({1\over 2},{1\over 3}), (-{1\over 2},-{1\over 3})}
解答:y=(x-2)(x-4)(x-6)(x-8)+12 = ((x-2)(x-8))((x-4)(x-6))+12\\ =(x^2-10x+16)(x^2-10x+24)+12 =(x^2-10x)^2+40(x^2-10x)+ 396 \\ =(x^2-10x+20)^2-4 \Rightarrow 當x^2-10x+20=0時,y有最小值-1,即(x,y)= \bbox[red,2pt]{(5\pm \sqrt 5,-4)}
解答:{1\over 1+2+\cdots + n} ={1\over n(n+1)/2} =2({1\over n}-{1\over n+1}) \\ \Rightarrow {1\over 1}+ {1\over 1+2}+ {1\over 1+2+3} +\cdots +{1\over 1+2+3+\cdots +100}\\ =1+2(({1\over 2}-{1\over 3})+ ({1\over 3}-{1\over 4})+ \cdots +({1\over 100}-{1\over 101}))\\ =1+2({1\over 2}-{1\over 101}) =1+{99\over 101} =\bbox[red, 2pt]{200\over 101}
解答:(x^2+x+1)(1+x+x^2 + \cdots +x^9+x^{10})= (1+x+x^2+\cdots +x^6)^2\\ \Rightarrow (x-1)(x^2+x+1) (x-1) (1+x+x^2 + \cdots +x^9+x^{10})= ((x-1)(1+x+x^2+\cdots +x^6))^2 \\ \Rightarrow (x^3-1)(x^{11}-1) = (x^7-1)^2 \Rightarrow x^{11}-2x^7 +x^3=0 \Rightarrow x^3(x^8-2x^4+1)=0\\ \Rightarrow x^3(x^4-1)^2=0 \Rightarrow x^3(x^2+1)^2(x^2-1)^2=0 \Rightarrow x^3(x-1)^2 (x+1)^2 (x^2+1)^2=0\\ \Rightarrow x=\bbox[red, 2pt]{0,-1}
解答:f(x,y)= x\sqrt{1-y^2} +y\sqrt{1-x^2} \Rightarrow \cases{f_x=\sqrt{1-y^2}-{xy\over \sqrt{1-x^2}} \\ f_y=-{xy\over \sqrt{1-y^2}}+\sqrt{1-x^2}}\\ 因此\cases{f_x=0\\ f_y=0} \Rightarrow xy= \sqrt{1-x^2}\cdot \sqrt{1-y^2} \Rightarrow x^2y^2 =(1-x^2)(1-y^2) =1-x^2-y^2+x^2y^2\\ \Rightarrow x^2+y^2=1代回f(x,y)=x\cdot \sqrt{x^2} +y\sqrt{y^2} =x^2+y^2= \bbox[red,2pt]{1}
解答:
解答:\cases{{y\over x}+ {1\over xy}={20\over 3} \\ xy+{x\over y}={5\over 3}},兩式相乘\Rightarrow y^2+{1\over y^2}={82\over 9} \Rightarrow 9y^4-82y^2+9=0 \Rightarrow (y^2-9)(9y^2-1)=0\\ \Rightarrow \cases{y=3 \Rightarrow x=1/2\\ y=-3 \Rightarrow x=-1/2\\ y=1/3\Rightarrow x=1/2\\ y=-1/3\Rightarrow x=-1/2} \Rightarrow (x,y)= \bbox[red, 2pt]{({1\over 2},3),(-{1\over 2},-3), ({1\over 2},{1\over 3}), (-{1\over 2},-{1\over 3})}
解答:y=(x-2)(x-4)(x-6)(x-8)+12 = ((x-2)(x-8))((x-4)(x-6))+12\\ =(x^2-10x+16)(x^2-10x+24)+12 =(x^2-10x)^2+40(x^2-10x)+ 396 \\ =(x^2-10x+20)^2-4 \Rightarrow 當x^2-10x+20=0時,y有最小值-1,即(x,y)= \bbox[red,2pt]{(5\pm \sqrt 5,-4)}
解答:{1\over 1+2+\cdots + n} ={1\over n(n+1)/2} =2({1\over n}-{1\over n+1}) \\ \Rightarrow {1\over 1}+ {1\over 1+2}+ {1\over 1+2+3} +\cdots +{1\over 1+2+3+\cdots +100}\\ =1+2(({1\over 2}-{1\over 3})+ ({1\over 3}-{1\over 4})+ \cdots +({1\over 100}-{1\over 101}))\\ =1+2({1\over 2}-{1\over 101}) =1+{99\over 101} =\bbox[red, 2pt]{200\over 101}
二、計算題:【4 題,每題 5 分,依計算過程,給予適當分數】
解答:x* (x*x)=\cases{x*0\\ x*x+x=0+x} \Rightarrow x*0=0+x=x\\因此2018*(2017*2017)=\cases{2018*2017+2017\\ 2018*0=2018} \Rightarrow 2018*2017+2017=2018\\ \Rightarrow 2018*2017=2018-2017=\bbox[red, 2pt]{1}解答:(x^2+x+1)(1+x+x^2 + \cdots +x^9+x^{10})= (1+x+x^2+\cdots +x^6)^2\\ \Rightarrow (x-1)(x^2+x+1) (x-1) (1+x+x^2 + \cdots +x^9+x^{10})= ((x-1)(1+x+x^2+\cdots +x^6))^2 \\ \Rightarrow (x^3-1)(x^{11}-1) = (x^7-1)^2 \Rightarrow x^{11}-2x^7 +x^3=0 \Rightarrow x^3(x^8-2x^4+1)=0\\ \Rightarrow x^3(x^4-1)^2=0 \Rightarrow x^3(x^2+1)^2(x^2-1)^2=0 \Rightarrow x^3(x-1)^2 (x+1)^2 (x^2+1)^2=0\\ \Rightarrow x=\bbox[red, 2pt]{0,-1}
解答:f(x,y)= x\sqrt{1-y^2} +y\sqrt{1-x^2} \Rightarrow \cases{f_x=\sqrt{1-y^2}-{xy\over \sqrt{1-x^2}} \\ f_y=-{xy\over \sqrt{1-y^2}}+\sqrt{1-x^2}}\\ 因此\cases{f_x=0\\ f_y=0} \Rightarrow xy= \sqrt{1-x^2}\cdot \sqrt{1-y^2} \Rightarrow x^2y^2 =(1-x^2)(1-y^2) =1-x^2-y^2+x^2y^2\\ \Rightarrow x^2+y^2=1代回f(x,y)=x\cdot \sqrt{x^2} +y\sqrt{y^2} =x^2+y^2= \bbox[red,2pt]{1}
解答:
令\cases{\overline{BD}=a \\ \overline{BE}=b},則\cases{\cos \angle BDA={a^2+16-36\over 8a} \\ \cos \angle BDE= {a^2+16-b^2 \over 8a}},由於\cos \angle BDA =-\cos \angle BDE \Rightarrow 2a^2-b^2=4;\\ 同理,\cases{\cos \angle BED={b^2+16-a^2\over 8b} \\ \cos \angle BEC= {b^2+16-64 \over 8b}},由於\cos \angle BED =-\cos \angle BEC \Rightarrow a^2-2b^2=-32 \\ 因此\cases{2a^2-b^2=4\cdots (1)\\ a^2-b^2=-32\cdots (2)} ,{(1)+(2)\over 3} \Rightarrow a^2-b^2=-{28\over 3}\cdots(3),(1)-(3) \Rightarrow a^2={40\over 3}\\ \Rightarrow a=\bbox[red, 2pt]{2\sqrt{30}\over 3}
======================= END ======================
解題僅供參考,其他教甄試題及詳解
沒有留言:
張貼留言