臺北市立松山高級工農職業學校108學年度正式教師甄選
一、填充題
解答:30=2×3×5=(1+1)×(2+1)×(4+1),取N=24⋅32⋅5=720解答:f(x)在x=2有極大值5⇒f′(2)=0;在切點(5,f(5))的切線斜率為−7⇒f′(5)=−7;因此∫52f″(x)dx=f′(x)|52=f′(5)−f′(2)=−7−0=−7
解答:cos∠DAF=→AD⋅→AF¯AD⋅¯AF=1125;又cos∠CBE=cos∠DAF=1125=¯BC2+¯BE2−¯CE22⋅¯BE⋅¯BE=50−¯CE250⇒¯CE2=28⇒cos∠CAE=¯AC2+¯AE2−¯CE22⋅¯AC⋅¯AE=50+50−282⋅5√2⋅5√2=72100⇒→AC⋅→AE=¯AC⋅¯AE⋅cos∠CAE=5√2⋅5√2⋅72100=36
解答:
與x+y=1、x軸、y軸同時相切的圓,共有四個,假設圓心分別為A、B、C、D,其中{A,D在x=y上且圓A較小B,C在x=−y上且兩圓有相同半徑令P∈x=y⇒P(t,t),t∈R⇒d(P,x+y=1)=t⇒|2t−1|√2=t⇒2t2−4t+1=0⇒t=2±√2⇒{A((2−√2)/2,(2−√2)/2)D((2+√2)/2,(2+√2)/2);同理,令Q∈x=−y⇒Q(t,−t)⇒d(Q,x+y=1)=|t|⇒1√2=|t|⇒t=±1√2⇒{B(−1/√2,1/√2)C(1/√2,−1/√2)⇒圓半徑分別為2±√22,√22
解答:令z=x+iy,x,y∈R⇒z2−2z2+2=1−4z2+2=i⇒4(x+iy)2+2=4x2−y2+2+2xyi=1−i⇒((x2−y2+2)+2xyi)(1−i)=4⇒(x2−y2+2+2xy)−(x2−y2+2−2xy)i=4⇒{x2−y2+2+2xy=4x2−y2+2−2xy=0⇒{xy=1x2−y2=0⇒(x,y)=(1,1),(−1,−1)⇒z=1+i或−1−i
解答:k3√k小計1−7178−2622×19=3827−6333×37=11164−12444×61=24412555⇒7+38+11+244+5=405
解答:本題送分
解答:
解答:k3√k小計1−7178−2622×19=3827−6333×37=11164−12444×61=24412555⇒7+38+11+244+5=405
解答:本題送分
解答:
{tanA=3/4−1/41+3/16=819tanB=1/4−(−3/4)1−3/16=1613;令{¯BD⊥¯AC且¯BD=h¯AD=a,則{ha=819h51−a=1613⇒h=819a=1613(51−a)⇒a=38⇒h=16⇒△ABC面積=12⋅51⋅16=408
解答:樣式數量累計3個6112個63×5=15161個63×52=75912313!=697232310023331032343!=61092353!=61153413!=6121343312434431273453!=6133⇒機率為13363=133216
解答:{y≤−1nx+nx,y≥0,n∈N,x,y∈Z;yx數量00−n2n⋅n+110−n(n−1)n(n−1)+120−n(n−2)n(n−2)+1⋯⋯⋯n−10−nn⋅1+1n0n⋅0+1合計=n(n+(n−1)+(n−2)+⋯+1+0)+n+1=n⋅n(n+1)2+n+1=n3+n22+n+1=n3+n2+2n+22
解答:
解答:{y≤−1nx+nx,y≥0,n∈N,x,y∈Z;yx數量00−n2n⋅n+110−n(n−1)n(n−1)+120−n(n−2)n(n−2)+1⋯⋯⋯n−10−nn⋅1+1n0n⋅0+1合計=n(n+(n−1)+(n−2)+⋯+1+0)+n+1=n⋅n(n+1)2+n+1=n3+n22+n+1=n3+n2+2n+22
解答:
y=x3/2+1⇒x=(y−1)2/3⇒繞y軸旋轉體積=∫91x2πdy=∫91x2πdy=∫91(y−1)4/3πdy=[37(y−1)7/3]|91=3847π
解答:令g(x)=3√ax+b−2⇒limx→1g(x)x−1=1⇒{g(1)=0g′(1)=1⇒{3√a+b=2⇒a+b=8⋯(1)a3⋅13√(a+b)2=1⋯(2)將(1)代入(2)⇒a=12⇒b=−4⇒(a,b)=(12,−4)
解答:{1x+1y+1z=1⇒yz+xz+xy=xyz⋯(1)x2+y2+z2=3/2⋯(2)x3+y3+z3=1⋯(3)因此{(x+y+z)2=x2+y2+z2+2(xy+yz+zx)x3+y3+z3−3xyz=(x+y+z)(x2+yz+z2−(xy+yz+zx)⇒{(x+y+z)2=3/2+2xyz1−3xyz=(x+y+z)(3/2−xyz)⇒(1−3xyz3/2−xyz)2=32+2xyz⇒(1−3a3/2−a)2=32+2a,其中a=xyz⇒16a3−108a2+48a+19=0⇒(4a+1)(4a2−28a+19)=0xyz=a=−14(∵
解答:
解答:{1x+1y+1z=1⇒yz+xz+xy=xyz⋯(1)x2+y2+z2=3/2⋯(2)x3+y3+z3=1⋯(3)因此{(x+y+z)2=x2+y2+z2+2(xy+yz+zx)x3+y3+z3−3xyz=(x+y+z)(x2+yz+z2−(xy+yz+zx)⇒{(x+y+z)2=3/2+2xyz1−3xyz=(x+y+z)(3/2−xyz)⇒(1−3xyz3/2−xyz)2=32+2xyz⇒(1−3a3/2−a)2=32+2a,其中a=xyz⇒16a3−108a2+48a+19=0⇒(4a+1)(4a2−28a+19)=0xyz=a=−14(∵
解答:
A=\begin{bmatrix} 4 & -3\\ 3 & 4\end{bmatrix} =5\begin{bmatrix} 4/5 & -3/5\\ 3/5 & 4/5\end{bmatrix} =5\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta\end{bmatrix} ,其中\cases{\cos\theta =4/5\\ \sin \theta = 3/5} \\\Rightarrow \cases{\angle P_2OP_1= \angle P_3OP_2 = \theta\\ \overline{OP_1}=a\\ \overline{OP_2}=5\cdot \overline{OP_1}= 5a\\ \overline{OP_3}= 5\cdot \overline{OP_2}=25a} \Rightarrow \triangle P_1P_2P_3 =\triangle OP_1P_2 +\triangle OP_2P_3- \triangle OP_1P_3 \\ ={1\over 2}\left(\overline{OP_1}\cdot \overline{OP_2}\sin \theta+ \overline{OP_2}\cdot \overline{OP_3}\sin \theta -\overline{OP_1}\cdot \overline{OP_3}\sin 2\theta \right)\\ ={1\over 2}\left(5a^2\cdot{3\over 5}+125a^2\cdot {3\over 5}-25a^2\cdot 2\cdot {3\over 5}\cdot {4\over 5} \right)={1\over 2}\cdot 54a^2= \bbox[red,2pt]{27a^2}
解答:{1\over 1!}+{2\over 3!}+{3\over 5!}+{4\over 7!}+\cdots =\sum_{k=0}^\infty {k+1\over (2k+1)!} ={1\over 2}\sum_{k=0}^\infty {(2k+1)+1\over (2k+1)!}\\ ={1\over 2}\sum_{k=0}^\infty \left({1\over (2k)!}+{ 1\over (2k+1)!} \right)=\bbox[red,2pt]{ {1\over 2}e}
解答:
解答:
\cases{A(0,0,6)\\ B(0,0,20)\\ P(x,y,0)} \Rightarrow \cases{\overline{AB}=14\\ \overline{AP}=\sqrt{x^2+y^2+36} =\sqrt{a+ 36}\\ \overline{BP}= \sqrt{x^2+y^2+400}=\sqrt{a+400}},其中a=x^2+y^2\\ \Rightarrow \cos \angle APB= {a+36+a+400-14^2\over 2\sqrt{a+36} \cdot \sqrt{a+400}} \le \cos 30^\circ ={\sqrt 3\over 2} \Rightarrow a^2-348a+14400 \le 0\\ \Rightarrow (a-48)(a-300)\le 0 \Rightarrow 48\le a\le 300\\ 本題相當於求聯立方程式\cases{48\le x^2+y^2\le 300\\ 0\le x\le 15\\ 0\le y\le 15}所圍面積=2\left({75\over 2}\sqrt 3-4\pi\right)+{1\over 12}(300-48)\pi\\ =\bbox[red,2pt]{75\sqrt 3+13\pi}
沒有留言:
張貼留言