114 學年度中區縣市政府教師甄選策略聯盟
選擇題【共 50 題,每題 2 分,共 100 分】請以 2B 鉛筆於答案卡上作答,單選題,答錯不倒扣。
解答:z+1z=√3⇒z2−√3z+1=0⇒z=√3+i2=eπi/6⇒z2025=e2025πi/6=e9πi/6=e3πi/2=−i⇒z2025+1z2025=−i+1−i=0,故選(C)解答:Case I |2|x−2|−5|=3⇒{2|x−2|−5=3⇒|x−2|=4⇒{x−2=4⇒x=6x−2=−4⇒−2∉N2|x−2|−5=−3⇒|x−2|=1⇒{x=3x=1Case II |2|x−2|−5|=2⇒{2|x−2|−5=2⇒|x−2|=7/2∉Z2|x−2|−5=−2⇒|x−2|=3/2∉ZCase III |2|x−2|−5|=1⇒{2|x−2|−5=1⇒{x=5x=−1∉N2|x−2|−5=−1⇒|x−2|=2⇒{x=4x=0∉NCase IV |2|x−2|−5|=0⇒|x−2|=5/2∉Z⇒x=1,3,4,5,6,共五個正整數解,故選(A)公布的答案是A或B
解答:P(A×B為偶數)=P(A為偶數)+P(B為偶數)−P(A,B皆為偶數)=13+14−13⋅14=12P(A×B為偶數且A×B+C為奇數)=12⋅(1−15)=25⇒條件奇數=2/51/2=45,故選(D)
解答:{limx→1f(x)存在⇒12−2⋅1=a+blimx→4f(x)存在⇒4a+b=3⋅4−4=8⇒{a+b=−14a+b=8⇒{a=3b=−4,故選(C)
解答:{3的倍數有7×11=77個21的倍數有11個33的倍數有7個231的倍數有1個⇒77−11−7+1=60,故選(C)
解答:3exy−x=0⇒3(xy′+y)exy−1=0⇒y′=(13exy−y)/x⇒y′(3,0)=13/3=19,故選(B)
解答:L=(1+0.08n)n⇒lnL=nln(1+0.08n)⇒limn→∞lnL=limn→∞ln(1+0.08n)1/n=limn→∞(ln(1+0.08n))′(1/n)′=limn→∞ln(1+0.08n)1/n=limn→∞0.08nn+0.08=0.08⇒limn→∞L=e0.08⇒limn→∞500(1+0.08n)n=500e0.08,故選(A)
解答:∫4−31x2+6x+12dx=∫4−31(x+3)2+3dx=13∫4−31(x+3√3)2+1dx=13[√3tan−1x+3√3]|4−3=√33tan−17√3,故選(B)
解答:(4AT)−1=[2−1−31]⇒4AT=[2−1−31]−1=[−1−1−3−2]⇒AT=[−1/4−1/4−3/4−2/4]⇒A=[−1/4−1/4−3/4−2/4]T=[−1/4−3/4−1/4−2/4],故選(C)
解答:{3的倍數有7×11=77個21的倍數有11個33的倍數有7個231的倍數有1個⇒77−11−7+1=60,故選(C)
解答:3exy−x=0⇒3(xy′+y)exy−1=0⇒y′=(13exy−y)/x⇒y′(3,0)=13/3=19,故選(B)
解答:L=(1+0.08n)n⇒lnL=nln(1+0.08n)⇒limn→∞lnL=limn→∞ln(1+0.08n)1/n=limn→∞(ln(1+0.08n))′(1/n)′=limn→∞ln(1+0.08n)1/n=limn→∞0.08nn+0.08=0.08⇒limn→∞L=e0.08⇒limn→∞500(1+0.08n)n=500e0.08,故選(A)
解答:∫4−31x2+6x+12dx=∫4−31(x+3)2+3dx=13∫4−31(x+3√3)2+1dx=13[√3tan−1x+3√3]|4−3=√33tan−17√3,故選(B)
解答:(4AT)−1=[2−1−31]⇒4AT=[2−1−31]−1=[−1−1−3−2]⇒AT=[−1/4−1/4−3/4−2/4]⇒A=[−1/4−1/4−3/4−2/4]T=[−1/4−3/4−1/4−2/4],故選(C)
解答:P∈L⇒P(t,6−t)⇒f(t)=|¯PA−¯PB|=|√(t−1)2+(2−t)2−√(t−5)2+(4−t)2|=|(t−1)2+(2−6)2−((t−5)2+(4−t)2)√(t−1)2+(2−t)2+√(t−5)2+(4−t)2|=|−12t+⋯√2t2+⋯+√2t2+⋯|⇒limt→±∞f(t)=122√2=3√2,故選(C)
解答:{u=lnxdv=x2dx⇒{du=dx/xv=13x3⇒∫x2lnxdx=13x3lnx−13∫x2dx=13x3lnx−19x3+C⇒∫e1x2lnxdx=[13x3lnx−19x3]|e1=13e3−19e3+19=2e3+19,故選(C)
解答:y=f(x)=23(x2+1)3/2⇒f′(x)=2x√x2+1⇒弧長=∫21√1+f′2(x)dx=∫21√4x4+4x2+1dx=∫21(2x2+1)dx=[23x3+x]|21=173,故選(B)
解答:
解答:假設取到球的序列為X \Rightarrow \cases{P(X=黑) =2/5\\ P(X=白白黑)=(3/5)(2/4)(2/3)= 1/5\\ P(X=白白白白黑)=0} \\ \Rightarrow 甲先取到黑球的機率={2\over 5}+{1\over 5}={3\over 5},故選\bbox[red, 2pt]{(D)}
解答:25+25\times{2\over 3} +25\times{2\over 3} +25\times{2\over 3}\times{2\over 3} +25\times{2\over 3}\times{2\over 3}+\cdots \\=25(1+2\cdot {2\over 3}+ 2\cdot ({2\over 3})^2 + 2\cdot ({2\over 3})^3 + \cdots) \\=25+ {100\over 3}+50(({2\over 3})^2 + ({2\over 3})^3 + \cdots) ={175\over 3}+50\cdot {4/9\over 1-2/3} ={175\over 3}+{200\over 3}=125,故選\bbox[red, 2pt]{(D)}
解答:\lim_{x\to 2}{(x-1)^3-1\over x-2}= \lim_{x\to 2}{((x-1)^3-1)'\over (x-2)'} =\lim_{x\to 2}{3(x-1)^2\over 1} =3,故選\bbox[red, 2pt]{(D)}

解答:f(x)=(x-b)(x-c)p(x)+2x+1= (x-a)(x-c)q(x)-x+7 = (x-a)(x-b)r(x)+3x-5 \\ \Rightarrow \cases{f(a)=-a+7=3a-5\\ f(b)=2b+1 =3b-5\\ f(c)=2c+1=-c+7} \Rightarrow \cases{a=3\\ b=6 \\c=2} \Rightarrow a+b+c=11,故選\bbox[red, 2pt]{(D)}
解答:{u=lnxdv=x2dx⇒{du=dx/xv=13x3⇒∫x2lnxdx=13x3lnx−13∫x2dx=13x3lnx−19x3+C⇒∫e1x2lnxdx=[13x3lnx−19x3]|e1=13e3−19e3+19=2e3+19,故選(C)
解答:y=f(x)=23(x2+1)3/2⇒f′(x)=2x√x2+1⇒弧長=∫21√1+f′2(x)dx=∫21√4x4+4x2+1dx=∫21(2x2+1)dx=[23x3+x]|21=173,故選(B)
解答:
半圓面積+矩形面積=12⋅82π+16⋅3=32π+48,故選(C)
解答:(D)×:A行向量線性相依⇒det(A)=0⇒A−1不存在,故選(D)
解答:A=[1234246801111345]R2−2R1→R2,R4−R1→R4→[1234000001110111]R3−R4→R3→[1234000000000111]R1−2R4→[1012000000000111]R2↔R4→[1012011100000000]⇒rref(A)=[1012011100000000]⇒rank(A)=2,故選(B)
解答:dydx=3y⇒1ydy=3dx⇒∫1ydy=∫3dx⇒lny=3x+C1⇒y=e3x+C1=Ce3x,故選(B)
解答:假設a=10,b=100(A)×:{loga=1logb=2⇒loga≯
解答:直線L:5x+4y=k \Rightarrow 斜率為-{5\over 4}\\橢圓:4x^2+(y-1)^2=4 \Rightarrow 8x+2(y-1)y'=0 \Rightarrow y'=-{8x\over 2(y-1)} =-{4x\over y-1}=-{5\over 4} \Rightarrow 16x=5y-5 \\ \Rightarrow y={16x+5\over 5} 代入橢圓\Rightarrow 4x^2+({16x\over 5})^2=4 \Rightarrow x^2={25\over 89} \Rightarrow x={5\over \sqrt{89}} \\ \Rightarrow 5x+4y=5x+ {64x+20\over 5}={25\over \sqrt{89}}+{64\over \sqrt{89}}+4= 4+\sqrt{89} \approx 4+9=13,故選\bbox[red, 2pt]{(C)}
解答:\cases{\vec a=(1,-1,2) \\\vec b=(3,4,-1)} \Rightarrow \cases{-2b=(-6,-8,2) \\ 2a+b=(5,2,3)} \Rightarrow \cos \theta ={(-6,-8,2) \cdot (5,2,3) \over |(-6,-8,2)||(5,-3,3)} \lt 0 \Rightarrow \theta \gt 90^\circ \ne 70^\circ\\,故選\bbox[red, 2pt]{(C)}
解答:\begin{vmatrix}1& x+1& 3x-1\\ x& x-2& x-3\\ x-1& x+1& x-1 \end{vmatrix} =9x^2-11x+10\\ (A)\times: 常數項為10\ne 11\\ (B)\bigcirc: 9-11+10=8\\ (C)\times :奇次項係數和=-11 \ne 4\\ (D)\times: 偶次項係數和=9+10=19 \ne 5,故選\bbox[red, 2pt]{(B)}
解答:X\sim B(n=2,p=1/6) \Rightarrow E(X)=np ={1\over 3},故選\bbox[red, 2pt]{(D)}
解答:(D)×:A行向量線性相依⇒det(A)=0⇒A−1不存在,故選(D)
解答:A=[1234246801111345]R2−2R1→R2,R4−R1→R4→[1234000001110111]R3−R4→R3→[1234000000000111]R1−2R4→[1012000000000111]R2↔R4→[1012011100000000]⇒rref(A)=[1012011100000000]⇒rank(A)=2,故選(B)
解答:dydx=3y⇒1ydy=3dx⇒∫1ydy=∫3dx⇒lny=3x+C1⇒y=e3x+C1=Ce3x,故選(B)
解答:假設a=10,b=100(A)×:{loga=1logb=2⇒loga≯
解答:直線L:5x+4y=k \Rightarrow 斜率為-{5\over 4}\\橢圓:4x^2+(y-1)^2=4 \Rightarrow 8x+2(y-1)y'=0 \Rightarrow y'=-{8x\over 2(y-1)} =-{4x\over y-1}=-{5\over 4} \Rightarrow 16x=5y-5 \\ \Rightarrow y={16x+5\over 5} 代入橢圓\Rightarrow 4x^2+({16x\over 5})^2=4 \Rightarrow x^2={25\over 89} \Rightarrow x={5\over \sqrt{89}} \\ \Rightarrow 5x+4y=5x+ {64x+20\over 5}={25\over \sqrt{89}}+{64\over \sqrt{89}}+4= 4+\sqrt{89} \approx 4+9=13,故選\bbox[red, 2pt]{(C)}
解答:\cases{\vec a=(1,-1,2) \\\vec b=(3,4,-1)} \Rightarrow \cases{-2b=(-6,-8,2) \\ 2a+b=(5,2,3)} \Rightarrow \cos \theta ={(-6,-8,2) \cdot (5,2,3) \over |(-6,-8,2)||(5,-3,3)} \lt 0 \Rightarrow \theta \gt 90^\circ \ne 70^\circ\\,故選\bbox[red, 2pt]{(C)}
解答:\begin{vmatrix}1& x+1& 3x-1\\ x& x-2& x-3\\ x-1& x+1& x-1 \end{vmatrix} =9x^2-11x+10\\ (A)\times: 常數項為10\ne 11\\ (B)\bigcirc: 9-11+10=8\\ (C)\times :奇次項係數和=-11 \ne 4\\ (D)\times: 偶次項係數和=9+10=19 \ne 5,故選\bbox[red, 2pt]{(B)}
解答:X\sim B(n=2,p=1/6) \Rightarrow E(X)=np ={1\over 3},故選\bbox[red, 2pt]{(D)}
解答:假設取到球的序列為X \Rightarrow \cases{P(X=黑) =2/5\\ P(X=白白黑)=(3/5)(2/4)(2/3)= 1/5\\ P(X=白白白白黑)=0} \\ \Rightarrow 甲先取到黑球的機率={2\over 5}+{1\over 5}={3\over 5},故選\bbox[red, 2pt]{(D)}
解答:25+25\times{2\over 3} +25\times{2\over 3} +25\times{2\over 3}\times{2\over 3} +25\times{2\over 3}\times{2\over 3}+\cdots \\=25(1+2\cdot {2\over 3}+ 2\cdot ({2\over 3})^2 + 2\cdot ({2\over 3})^3 + \cdots) \\=25+ {100\over 3}+50(({2\over 3})^2 + ({2\over 3})^3 + \cdots) ={175\over 3}+50\cdot {4/9\over 1-2/3} ={175\over 3}+{200\over 3}=125,故選\bbox[red, 2pt]{(D)}
解答:\lim_{x\to 2}{(x-1)^3-1\over x-2}= \lim_{x\to 2}{((x-1)^3-1)'\over (x-2)'} =\lim_{x\to 2}{3(x-1)^2\over 1} =3,故選\bbox[red, 2pt]{(D)}
解答:f(x)=x^3+ax^2+bx+c \Rightarrow f'(x)=3x^2+2ax+b \\ \cases{x=-1有極大值2\\ x=3有極小值} \Rightarrow \cases{f(-1)=2\\ f'(-1)=0\\ f'(3) =0} \Rightarrow \cases{-1+a-b+c=2\\3-2a+b=0\\ 27+6a+b=0} \Rightarrow \cases{a=-3\\ b=-9\\ c=-3} \\ \Rightarrow a+b+c=-15,故選\bbox[red, 2pt]{(B)}
解答:\int_0^4(1-\sqrt{16-x^2}) \,dx = \int_0^4 1\,dx - \int_0^4 \sqrt{16-x^2}\,dx =4-4\pi(四分之一圓),故選\bbox[red, 2pt]{(C)}
解答:P(A')={1\over 4} \Rightarrow P(A)={3\over 4}, 又P(A'\cup B)={1\over 2} \Rightarrow P(A\cap B)={3\over 4}-{1\over 2}={1\over 4} \\ \Rightarrow P(B\mid A)={P(A\cap B)\over P(A)} ={1/4\over 3/4} ={1\over 3},故選\bbox[red, 2pt]{(C)}
解答:\int_0^4(1-\sqrt{16-x^2}) \,dx = \int_0^4 1\,dx - \int_0^4 \sqrt{16-x^2}\,dx =4-4\pi(四分之一圓),故選\bbox[red, 2pt]{(C)}
解答:P(A')={1\over 4} \Rightarrow P(A)={3\over 4}, 又P(A'\cup B)={1\over 2} \Rightarrow P(A\cap B)={3\over 4}-{1\over 2}={1\over 4} \\ \Rightarrow P(B\mid A)={P(A\cap B)\over P(A)} ={1/4\over 3/4} ={1\over 3},故選\bbox[red, 2pt]{(C)}
R=四分之一圓, 繞y軸旋轉得一半球, 半球體積={4\over 3}\pi\cdot 2^3\times {1\over 2}={16\over 3}\pi,故選\bbox[red, 2pt]{(B)}
解答:
解答:
由電腦繪圖可知最大值小於二分之一,但公佈的答案是\bbox[cyan,2pt]{(C)}, 試題有疑義!!
解答:f(x)=\sqrt{1+\sqrt{x+8}}-2 \Rightarrow f'(x)={1\over 4}(1+(x+8)^{-1/2})^{-1/2}(x+8)^{-1/2} \Rightarrow f'(1)= {1\over 4}\cdot {1\over 2}\cdot {1\over 3}={1\over 24} \\ \Rightarrow \lim_{x\to 1}{f(x)\over x-1} = \lim_{x\to 1}{f'(x)\over (x-1)'} =f'(1)={1\over 24},故選\bbox[red, 2pt]{(B)}
解答:x={\sqrt 3+1\over 2\sqrt 2}+{\sqrt 3-1\over 2\sqrt 2}i \Rightarrow x^2={4+2\sqrt 3\over 8} +{2\over 4}i-{ 4-2\sqrt 3\over 8} ={\sqrt 3\over 2}+{1\over 2}i =\cos 30^\circ +i\sin 30^\circ \\ \Rightarrow z=(\cos 30^\circ+i\sin 30)^3= \cos 90^\circ +i\sin 90^\circ =i,故選\bbox[red, 2pt]{(C)}
解答:信賴區間=[\bar x-d,\bar x+d] \Rightarrow 寬度=2d與平均值\bar x無關,故選\bbox[red, 2pt]{(B)}
解答:\cases{f(x)=x+2\\ g(x)=ax-2} \Rightarrow \cases{f(g(x))=f(ax-2)=ax\\ g(f(x)) =g(x+2)=ax+2a-2} \Rightarrow f(g(x))=g(f(x)) \Rightarrow 2a-2=0 \\ \Rightarrow a=1,故選\bbox[red, 2pt]{(A)}
解答:f(x)=\sqrt{1+\sqrt{x+8}}-2 \Rightarrow f'(x)={1\over 4}(1+(x+8)^{-1/2})^{-1/2}(x+8)^{-1/2} \Rightarrow f'(1)= {1\over 4}\cdot {1\over 2}\cdot {1\over 3}={1\over 24} \\ \Rightarrow \lim_{x\to 1}{f(x)\over x-1} = \lim_{x\to 1}{f'(x)\over (x-1)'} =f'(1)={1\over 24},故選\bbox[red, 2pt]{(B)}
解答:x={\sqrt 3+1\over 2\sqrt 2}+{\sqrt 3-1\over 2\sqrt 2}i \Rightarrow x^2={4+2\sqrt 3\over 8} +{2\over 4}i-{ 4-2\sqrt 3\over 8} ={\sqrt 3\over 2}+{1\over 2}i =\cos 30^\circ +i\sin 30^\circ \\ \Rightarrow z=(\cos 30^\circ+i\sin 30)^3= \cos 90^\circ +i\sin 90^\circ =i,故選\bbox[red, 2pt]{(C)}
解答:信賴區間=[\bar x-d,\bar x+d] \Rightarrow 寬度=2d與平均值\bar x無關,故選\bbox[red, 2pt]{(B)}
解答:\cases{f(x)=x+2\\ g(x)=ax-2} \Rightarrow \cases{f(g(x))=f(ax-2)=ax\\ g(f(x)) =g(x+2)=ax+2a-2} \Rightarrow f(g(x))=g(f(x)) \Rightarrow 2a-2=0 \\ \Rightarrow a=1,故選\bbox[red, 2pt]{(A)}
解答:(A)\times: \cases{a=b=11\\ c=10} \Rightarrow s=(a+b+c)/2 =16 \Rightarrow \sqrt{16\cdot 5\cdot 5\cdot 6} \not \in \mathbb N \\(B) \times: \cases{a=b=12\\ c=10} \Rightarrow s=(a+b+c)/2 =17 \Rightarrow \sqrt{17\cdot 5\cdot 5\cdot 7} \not \in \mathbb N \\(C)\bigcirc: \cases{a=b=13\\ c=10} \Rightarrow s=(a+b+c)/2 =18 \Rightarrow \sqrt{18\cdot 5\cdot 5\cdot 8} =60 \\(D)\bigcirc: \cases{a=b=14\\ c=10} \Rightarrow s=(a+b+c)/2 =19 \Rightarrow \sqrt{19\cdot 5\cdot 5\cdot 9} \not \in \mathbb N \\,故選\bbox[red, 2pt]{(C)}
解答:f(x,y)=x^2+y^2 +(x-2y+6)^2 \Rightarrow \cases{f_x=2x+2(x-2y+6) =0\\ f_y=2y-4(x-2y+6) =0} \Rightarrow \cases{ x=-1\\ y=2} \\ \Rightarrow f(-1,2)=1+4+(-1-4+6)^2=6,故選\bbox[red, 2pt]{(B)}
解答:f(x,y)=x^2+y^2 +(x-2y+6)^2 \Rightarrow \cases{f_x=2x+2(x-2y+6) =0\\ f_y=2y-4(x-2y+6) =0} \Rightarrow \cases{ x=-1\\ y=2} \\ \Rightarrow f(-1,2)=1+4+(-1-4+6)^2=6,故選\bbox[red, 2pt]{(B)}

解答:f(x)=(x-b)(x-c)p(x)+2x+1= (x-a)(x-c)q(x)-x+7 = (x-a)(x-b)r(x)+3x-5 \\ \Rightarrow \cases{f(a)=-a+7=3a-5\\ f(b)=2b+1 =3b-5\\ f(c)=2c+1=-c+7} \Rightarrow \cases{a=3\\ b=6 \\c=2} \Rightarrow a+b+c=11,故選\bbox[red, 2pt]{(D)}
x^2+y^2-4x-6y+4=0 \Rightarrow (x-2)^2+ (y-3)^2=9 \Rightarrow 圓心O(2,3)\\ 假設過A之弦中點為P(x,y), 則\angle OPA=90^\circ \Rightarrow \overline{OA}^2=\overline{PO}^2+\overline{PA}^2 \\ \Rightarrow 8=(x-2)^2+(y-3)^2+(x-4)^2+(y-5)^2 =2x^2+2y^2-12x-16y+54 \\ \Rightarrow x^2+y^2-6x-8y+23=0 \Rightarrow (x-3)^2+(y-4)^2=2 \Rightarrow 圓心為(3,4),故選\bbox[red, 2pt]{(A)}
解答:題目應該加一句:\cases{\overline{BC}=a\\ \overline{AC}=b\\ \overline{AB} =c}, (a+b+c)(a+b-c)=a^2+b^2-c^2+2ab=ab \\ \Rightarrow a^2+b^2-c^2=-ab \Rightarrow \cos \angle C={a^2+b^2-c^2\over 2ab}={-ab\over 2ab}=-{1\over 2} \Rightarrow \angle C=120^\circ,故選\bbox[red, 2pt]{(C)}
解答:f(x)=4^{x+1}-2^{x+1} \Rightarrow f'(x)=\ln 4\cdot 4^{x+1}-\ln 2\cdot 2^{x+1} =2\ln 2\cdot 2^{2x+2}-\ln2\cdot 2^{x+1}= \ln 2(2^{2x+3}-2^{x+1}) \\ 因此f'(x)=0 \Rightarrow 2x+3=x+1 \Rightarrow x=-2, 又f'(x)\gt 0, \text{ for }x\gt -2 \Rightarrow f(x)遞增,x\gt -2\\ 因此在區間-2\le x\le 2, \cases{M=f(2)=4^3-2^3=56\\ m=f(-2)=4^{-1}-2^{-1}=-1/4} \Rightarrow M+m={223\over 4},故選\bbox[red, 2pt]{(A)}
解答:S={1\over 2}+{3\over 2^2}+{5\over 2^3}+ \cdots +{15\over 2^8}+{17\over 2^9} \Rightarrow {1\over 2}S={1\over 2^2}+{3\over 2^3}+{5\over 2^4}+ \cdots +{15\over 2^9}+{17\over 2^{10}} \\ \Rightarrow S-{1\over 2}S= {1\over 2}+{2\over 2^2}+{2\over 2^3} + \cdots +{2\over 2^9}-{17\over 2^{10}} \Rightarrow {1\over 2}S={1\over 2}+{1\over 2}+{1\over 2^2}+ \cdots+{1\over 2^8}-{17\over 2^{10}} \\ \Rightarrow S=1+1+{1\over 2}+{1\over 2^2}+\cdots+{1\over 2^7}-{17\over 2^9}=1+{255\over 128}-{17\over 512} ={1515\over 512},故選\bbox[red, 2pt]{(B)}
解答:C^{12}_5C^7_4C^3_3 =166320,故選\bbox[red, 2pt]{(D)}
解答:令\cases{f(x)=(x^2+3x+2)^{10} \\g(x)=x^2+2x+3} \Rightarrow f(x) =(x^4+6x^3 +13x^2+12x+4)^5 =((x^2+4x+12)g(x)-4x-2)^5 \\ \Rightarrow 只需考慮(-4x-2)^5除以g(x)的餘式\\ 又(-4x-2)^5=(-64x^3-96x^2-48x-8)(16x^2+16x+4) \\=((-64x+32)g(x)+80x-104)(16g(x)-16x-44) \Rightarrow 只需考慮(80x-104)(-16x-44) \\又(80x-104)(-16x-44)=-1280x^2-1856x+4576=-1280g(x)+704x+8416 \\ \Rightarrow 704x+8416,故選\bbox[red, 2pt]{(A)}
解答:e^1=e \Rightarrow \ln(e)=1,故選\bbox[red, 2pt]{(C)}
解答:\lim_{x\to \infty}{4x-\sin(x^2+5x+7) \over x-\cos(2x-3)} =\lim_{x\to \infty}{4x \over x } =4,故選\bbox[red, 2pt]{(D)}
解答:f(x)=(4x^2+3) (5x+3)^2 \Rightarrow f'(x)=8x(5x+3)^2 +10(4x^2+3)(5x+3) \Rightarrow f'(1)=8^3+10\cdot 7\cdot 8 \\=1072,故選\bbox[red, 2pt]{(D)}
解答:\int_0^\pi \cos^2(x)\,dx = {1\over 2}\int_0^\pi (\cos(2x)+1)\,dx ={1\over 2}\left. \left[ {1\over 2}\sin(2x)+x \right] \right|_0^\pi ={\pi\over 2},故選\bbox[red, 2pt]{(A)}
解答:1-{1\over 3}+{1\over 5}-{1\over 7}+{1\over 9}- \cdots \\= \left. \left[x-{1\over 3}x^3 +{1\over 5}x^5 -{1\over 7}x^7+{1\over 9}x^9-\cdots\right] \right|_0^1 =\int_0^1 (1-x^2+x^4-x^6+x^8+\cdots)\,dx \\=\int_0^1 {1\over 1+x^2}\,dx = \left. \left[ \tan^{-1} x \right] \right|_0^1 ={\pi\over 4},故選\bbox[red, 2pt]{(B)}
解答:f(x,y)=x^4+y^4-4xy+8 \Rightarrow \cases{f_x=4x^3-4y\\ f_y=4y^3-4x} \Rightarrow \cases{f_{xx}= 12x^2\\ f_{xy}= -4\\ f_{yy} =12y^2} \Rightarrow d(x,y)=f_{xx}f_{yy}-(f_{xy})^2 \\ \Rightarrow d(x,y)=144x^2y^2-16 \\ 若\cases{f_x=0\\ f_y=0} \Rightarrow \cases{x^3=y\\ y^3=x} \Rightarrow y^9=y \Rightarrow y(y^8-1)=0 \Rightarrow \cases{y=0 \Rightarrow x=0\\ y=1 \Rightarrow x=1\\ y=-1\Rightarrow x=-1} \\\Rightarrow (0,0),(1,1),(-1,-1) 為臨界點 又\cases{d(0,0)=-16\lt 0\Rightarrow (0,0)為鞍點 \\ d(1,1)=128\gt 0 \Rightarrow f_{xx}(1,1) \gt 0 \Rightarrow f(1,1)為極小值\\ d(-1,-1)=128\gt 0 \Rightarrow f_{xx}(-1,-1)=\gt 0 \Rightarrow f(-1,-1)為極小值}\\,故選\bbox[red, 2pt]{(D)}
解答:\det(A ) = 16+140+162- 126-192-15=-15,故選\bbox[red, 2pt]{(A)}
解答:\det(A-\lambda I) =-\lambda^3+9 \lambda^2-26\lambda+24 =-(\lambda-2) (\lambda-3)(\lambda-4) \Rightarrow 特徵值\lambda=2,3,4,故選\bbox[red, 2pt]{(A)}

====================== END ==========================
解題僅供參考,其他教甄試題及詳解
解答:題目應該加一句:\cases{\overline{BC}=a\\ \overline{AC}=b\\ \overline{AB} =c}, (a+b+c)(a+b-c)=a^2+b^2-c^2+2ab=ab \\ \Rightarrow a^2+b^2-c^2=-ab \Rightarrow \cos \angle C={a^2+b^2-c^2\over 2ab}={-ab\over 2ab}=-{1\over 2} \Rightarrow \angle C=120^\circ,故選\bbox[red, 2pt]{(C)}
解答:f(x)=4^{x+1}-2^{x+1} \Rightarrow f'(x)=\ln 4\cdot 4^{x+1}-\ln 2\cdot 2^{x+1} =2\ln 2\cdot 2^{2x+2}-\ln2\cdot 2^{x+1}= \ln 2(2^{2x+3}-2^{x+1}) \\ 因此f'(x)=0 \Rightarrow 2x+3=x+1 \Rightarrow x=-2, 又f'(x)\gt 0, \text{ for }x\gt -2 \Rightarrow f(x)遞增,x\gt -2\\ 因此在區間-2\le x\le 2, \cases{M=f(2)=4^3-2^3=56\\ m=f(-2)=4^{-1}-2^{-1}=-1/4} \Rightarrow M+m={223\over 4},故選\bbox[red, 2pt]{(A)}
解答:S={1\over 2}+{3\over 2^2}+{5\over 2^3}+ \cdots +{15\over 2^8}+{17\over 2^9} \Rightarrow {1\over 2}S={1\over 2^2}+{3\over 2^3}+{5\over 2^4}+ \cdots +{15\over 2^9}+{17\over 2^{10}} \\ \Rightarrow S-{1\over 2}S= {1\over 2}+{2\over 2^2}+{2\over 2^3} + \cdots +{2\over 2^9}-{17\over 2^{10}} \Rightarrow {1\over 2}S={1\over 2}+{1\over 2}+{1\over 2^2}+ \cdots+{1\over 2^8}-{17\over 2^{10}} \\ \Rightarrow S=1+1+{1\over 2}+{1\over 2^2}+\cdots+{1\over 2^7}-{17\over 2^9}=1+{255\over 128}-{17\over 512} ={1515\over 512},故選\bbox[red, 2pt]{(B)}
解答:C^{12}_5C^7_4C^3_3 =166320,故選\bbox[red, 2pt]{(D)}
解答:令\cases{f(x)=(x^2+3x+2)^{10} \\g(x)=x^2+2x+3} \Rightarrow f(x) =(x^4+6x^3 +13x^2+12x+4)^5 =((x^2+4x+12)g(x)-4x-2)^5 \\ \Rightarrow 只需考慮(-4x-2)^5除以g(x)的餘式\\ 又(-4x-2)^5=(-64x^3-96x^2-48x-8)(16x^2+16x+4) \\=((-64x+32)g(x)+80x-104)(16g(x)-16x-44) \Rightarrow 只需考慮(80x-104)(-16x-44) \\又(80x-104)(-16x-44)=-1280x^2-1856x+4576=-1280g(x)+704x+8416 \\ \Rightarrow 704x+8416,故選\bbox[red, 2pt]{(A)}
解答:e^1=e \Rightarrow \ln(e)=1,故選\bbox[red, 2pt]{(C)}
解答:\lim_{x\to \infty}{4x-\sin(x^2+5x+7) \over x-\cos(2x-3)} =\lim_{x\to \infty}{4x \over x } =4,故選\bbox[red, 2pt]{(D)}
解答:f(x)=(4x^2+3) (5x+3)^2 \Rightarrow f'(x)=8x(5x+3)^2 +10(4x^2+3)(5x+3) \Rightarrow f'(1)=8^3+10\cdot 7\cdot 8 \\=1072,故選\bbox[red, 2pt]{(D)}
解答:\int_0^\pi \cos^2(x)\,dx = {1\over 2}\int_0^\pi (\cos(2x)+1)\,dx ={1\over 2}\left. \left[ {1\over 2}\sin(2x)+x \right] \right|_0^\pi ={\pi\over 2},故選\bbox[red, 2pt]{(A)}
解答:1-{1\over 3}+{1\over 5}-{1\over 7}+{1\over 9}- \cdots \\= \left. \left[x-{1\over 3}x^3 +{1\over 5}x^5 -{1\over 7}x^7+{1\over 9}x^9-\cdots\right] \right|_0^1 =\int_0^1 (1-x^2+x^4-x^6+x^8+\cdots)\,dx \\=\int_0^1 {1\over 1+x^2}\,dx = \left. \left[ \tan^{-1} x \right] \right|_0^1 ={\pi\over 4},故選\bbox[red, 2pt]{(B)}
解答:f(x,y)=x^4+y^4-4xy+8 \Rightarrow \cases{f_x=4x^3-4y\\ f_y=4y^3-4x} \Rightarrow \cases{f_{xx}= 12x^2\\ f_{xy}= -4\\ f_{yy} =12y^2} \Rightarrow d(x,y)=f_{xx}f_{yy}-(f_{xy})^2 \\ \Rightarrow d(x,y)=144x^2y^2-16 \\ 若\cases{f_x=0\\ f_y=0} \Rightarrow \cases{x^3=y\\ y^3=x} \Rightarrow y^9=y \Rightarrow y(y^8-1)=0 \Rightarrow \cases{y=0 \Rightarrow x=0\\ y=1 \Rightarrow x=1\\ y=-1\Rightarrow x=-1} \\\Rightarrow (0,0),(1,1),(-1,-1) 為臨界點 又\cases{d(0,0)=-16\lt 0\Rightarrow (0,0)為鞍點 \\ d(1,1)=128\gt 0 \Rightarrow f_{xx}(1,1) \gt 0 \Rightarrow f(1,1)為極小值\\ d(-1,-1)=128\gt 0 \Rightarrow f_{xx}(-1,-1)=\gt 0 \Rightarrow f(-1,-1)為極小值}\\,故選\bbox[red, 2pt]{(D)}
解答:\det(A ) = 16+140+162- 126-192-15=-15,故選\bbox[red, 2pt]{(A)}
解答:\det(A-\lambda I) =-\lambda^3+9 \lambda^2-26\lambda+24 =-(\lambda-2) (\lambda-3)(\lambda-4) \Rightarrow 特徵值\lambda=2,3,4,故選\bbox[red, 2pt]{(A)}

解題僅供參考,其他教甄試題及詳解
第29題在古早簡體數競賽數看到,裏面胡說八道,真實狀況應該答案小於1。為何不送分,很難懂。
回覆刪除