Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年6月12日 星期四

114年中區聯盟國中教甄-數學詳解

114 學年度中區縣市政府教師甄選策略聯盟

選擇題【共 50 題,每題 2 分,共 100 分】請以 2B 鉛筆於答案卡上作答,單選題,答錯不倒扣。

解答:z+1z=3z23z+1=0z=3+i2=eπi/6z2025=e2025πi/6=e9πi/6=e3πi/2=iz2025+1z2025=i+1i=0(C)
解答:Case I |2|x2|5|=3{2|x2|5=3|x2|=4{x2=4x=6x2=42N2|x2|5=3|x2|=1{x=3x=1Case II |2|x2|5|=2{2|x2|5=2|x2|=7/2Z2|x2|5=2|x2|=3/2ZCase III |2|x2|5|=1{2|x2|5=1{x=5x=1N2|x2|5=1|x2|=2{x=4x=0NCase IV |2|x2|5|=0|x2|=5/2Zx=1,3,4,5,6(A)AB
解答:P(A×B)=P(A)+P(B)P(A,B)=13+141314=12P(A×BA×B+C)=12(115)=25=2/51/2=45(D)
解答:{limx1f(x)1221=a+blimx4f(x)4a+b=344=8{a+b=14a+b=8{a=3b=4(C)

解答:{37×11=772111337231177117+1=60(C)
解答:3exyx=03(xy+y)exy1=0y=(13exyy)/xy(3,0)=13/3=19(B)
解答:L=(1+0.08n)nlnL=nln(1+0.08n)limnlnL=limnln(1+0.08n)1/n=limn(ln(1+0.08n))(1/n)=limnln(1+0.08n)1/n=limn0.08nn+0.08=0.08limnL=e0.08limn500(1+0.08n)n=500e0.08(A)
解答:431x2+6x+12dx=431(x+3)2+3dx=13431(x+33)2+1dx=13[3tan1x+33]|43=33tan173(B)
解答:(4AT)1=[2131]4AT=[2131]1=[1132]AT=[1/41/43/42/4]A=[1/41/43/42/4]T=[1/43/41/42/4](C)
解答:PLP(t,6t)f(t)=|¯PA¯PB|=|(t1)2+(2t)2(t5)2+(4t)2|=|(t1)2+(26)2((t5)2+(4t)2)(t1)2+(2t)2+(t5)2+(4t)2|=|12t+2t2++2t2+|limt±f(t)=1222=32(C)
解答:{u=lnxdv=x2dx{du=dx/xv=13x3x2lnxdx=13x3lnx13x2dx=13x3lnx19x3+Ce1x2lnxdx=[13x3lnx19x3]|e1=13e319e3+19=2e3+19(C)
解答:y=f(x)=23(x2+1)3/2f(x)=2xx2+1=211+f2(x)dx=214x4+4x2+1dx=21(2x2+1)dx=[23x3+x]|21=173(B)
解答:
+=1282π+163=32π+48(C)
解答:(D)×:Adet(A)=0A1(D)
解答:A=[1234246801111345]R22R1R2,R4R1R4[1234000001110111]R3R4R3[1234000000000111]R12R4[1012000000000111]R2R4[1012011100000000]rref(A)=[1012011100000000]rank(A)=2(B)
解答:dydx=3y1ydy=3dx1ydy=3dxlny=3x+C1y=e3x+C1=Ce3x(B)
解答:a=10,b=100(A)×:{loga=1logb=2logalogb(B)×:x=1logax=0=logbx(C)×:x=10{logax=1logbx=1/2logbxlogax(D)
解答:L:5x+4y=k54:4x2+(y1)2=48x+2(y1)y=0y=8x2(y1)=4xy1=5416x=5y5y=16x+554x2+(16x5)2=4x2=2589x=5895x+4y=5x+64x+205=2589+6489+4=4+894+9=13(C)
解答:{a=(1,1,2)b=(3,4,1){2b=(6,8,2)2a+b=(5,2,3)cosθ=(6,8,2)(5,2,3)|(6,8,2)||(5,3,3)<0θ>9070(C)
解答:|1x+13x1xx2x3x1x+1x1|=9x211x+10(A)×:1011(B):911+10=8(C)×:=114(D)×:=9+10=195(B)
解答:XB(n=2,p=1/6)E(X)=np=13(D)

解答:X{P(X=)=2/5P(X=)=(3/5)(2/4)(2/3)=1/5P(X=)=0=25+15=35(D)



解答:25+25×23+25×23+25×23×23+25×23×23+=25(1+223+2(23)2+2(23)3+)=25+1003+50((23)2+(23)3+)=1753+504/912/3=1753+2003=125(D)
解答:limx2(x1)31x2=limx2((x1)31)(x2)=limx23(x1)21=3(D)

解答:f(x)=x3+ax2+bx+cf(x)=3x2+2ax+b{x=12x=3{f(1)=2f(1)=0f(3)=0{1+ab+c=232a+b=027+6a+b=0{a=3b=9c=3a+b+c=15(B)
解答:40(116x2)dx=401dx4016x2dx=44π()(C)
解答:P(A)=14P(A)=34,P(AB)=12P(AB)=3412=14P(BA)=P(AB)P(A)=1/43/4=13(C)

解答:
R=,y,=43π23×12=163π(B)
解答:


(C),!!
解答:f(x)=1+x+82f(x)=14(1+(x+8)1/2)1/2(x+8)1/2f(1)=141213=124limx1f(x)x1=limx1f(x)(x1)=f(1)=124(B)
解答:x=3+122+3122ix2=4+238+24i4238=32+12i=cos30+isin30z=(cos30+isin30)3=cos90+isin90=i(C)
解答:=[ˉxd,ˉx+d]=2dˉx(B)
解答:{f(x)=x+2g(x)=ax2{f(g(x))=f(ax2)=axg(f(x))=g(x+2)=ax+2a2f(g(x))=g(f(x))2a2=0a=1(A)




解答:(A)×:{a=b=11c=10s=(a+b+c)/2=1616556N(B)×:{a=b=12c=10s=(a+b+c)/2=1717557N(C):{a=b=13c=10s=(a+b+c)/2=1818558=60(D):{a=b=14c=10s=(a+b+c)/2=1919559N(C)
解答:f(x,y)=x2+y2+(x2y+6)2{fx=2x+2(x2y+6)=0fy=2y4(x2y+6)=0{x=1y=2f(1,2)=1+4+(14+6)2=6(B)


解答:f(x)=(xb)(xc)p(x)+2x+1=(xa)(xc)q(x)x+7=(xa)(xb)r(x)+3x5{f(a)=a+7=3a5f(b)=2b+1=3b5f(c)=2c+1=c+7{a=3b=6c=2a+b+c=11(D)


解答:

x2+y24x6y+4=0(x2)2+(y3)2=9O(2,3)AP(x,y),OPA=90¯OA2=¯PO2+¯PA28=(x2)2+(y3)2+(x4)2+(y5)2=2x2+2y212x16y+54x2+y26x8y+23=0(x3)2+(y4)2=2(3,4)(A)
解答::{¯BC=a¯AC=b¯AB=c,(a+b+c)(a+bc)=a2+b2c2+2ab=aba2+b2c2=abcosC=a2+b2c22ab=ab2ab=12C=120(C)
解答:f(x)=4x+12x+1f(x)=ln44x+1ln22x+1=2ln222x+2ln22x+1=ln2(22x+32x+1)f(x)=02x+3=x+1x=2,f(x)>0, for x>2f(x),x>22x2,{M=f(2)=4323=56m=f(2)=4121=1/4M+m=2234(A)
解答:S=12+322+523++1528+172912S=122+323+524++1529+17210S12S=12+222+223++2291721012S=12+12+122++12817210S=1+1+12+122++1271729=1+25512817512=1515512(B)
解答:C125C74C33=166320(D)
解答:{f(x)=(x2+3x+2)10g(x)=x2+2x+3f(x)=(x4+6x3+13x2+12x+4)5=((x2+4x+12)g(x)4x2)5(4x2)5g(x)(4x2)5=(64x396x248x8)(16x2+16x+4)=((64x+32)g(x)+80x104)(16g(x)16x44)(80x104)(16x44)(80x104)(16x44)=1280x21856x+4576=1280g(x)+704x+8416704x+8416(A)
解答:e1=eln(e)=1(C)
解答:limx4xsin(x2+5x+7)xcos(2x3)=limx4xx=4(D)
解答:f(x)=(4x2+3)(5x+3)2f(x)=8x(5x+3)2+10(4x2+3)(5x+3)f(1)=83+1078=1072(D)
解答:π0cos2(x)dx=12π0(cos(2x)+1)dx=12[12sin(2x)+x]|π0=π2(A)
解答:113+1517+19=[x13x3+15x517x7+19x9]|10=10(1x2+x4x6+x8+)dx=1011+x2dx=[tan1x]|10=π4(B)
解答:f(x,y)=x4+y44xy+8{fx=4x34yfy=4y34x{fxx=12x2fxy=4fyy=12y2d(x,y)=fxxfyy(fxy)2d(x,y)=144x2y216{fx=0fy=0{x3=yy3=xy9=yy(y81)=0{y=0x=0y=1x=1y=1x=1(0,0),(1,1),(1,1){d(0,0)=16<0(0,0)d(1,1)=128>0fxx(1,1)>0f(1,1)d(1,1)=128>0fxx(1,1)=>0f(1,1)(D)
解答:det(A)=16+140+16212619215=15(A)
解答:det(AλI)=λ3+9λ226λ+24=(λ2)(λ3)(λ4)λ=2,3,4(A)



====================== END ==========================
解題僅供參考,其他教甄試題及詳解



1 則留言:

  1. 第29題在古早簡體數競賽數看到,裏面胡說八道,真實狀況應該答案小於1。為何不送分,很難懂。

    回覆刪除