國立蘭陽女子高級中學 114 學年度第一次正式教師甄選
一、 多選題(請在答案卷第一頁作答,並依序標明題號,每一題 8 分,只錯一個選項者得 5 分,只錯二個選項者得 2 分,錯三個以上選項者得 0 分,共 16 分)
解答:(1)◯:y=3x−x2=0⇒x(3−x)=0⇒x=0,3⇒與x軸交於(0,0),(3,0)(2)◯:∫30(3x−x2)dx=[32x2−13x3]|30=276=92(3)◯:y=3x−x2=−(x−32)2+94⇒對稱軸:x=32⇒a=32(4)◯:3x−x2=mx⇒x2+(m−3)x=0⇒x(x+m−3)=0⇒x=0,3−m⇒交點(0,0),(3−m,3m−m2)(5)◯:∫3−m0[(3x−x2)−mx]dx=[32x2−13x3−m2x2]|3−m0=(32−m2)(3−m)2−13(3−m)3=16(3−m)3=92×12⇒3−m=33√2⇒m=3−33√2故選(12345)
二、 填充題(請在答案卷第二頁作答,並依序標明題號,不須計算過程,僅須寫出最後的答案,每一題 5 分,共 65 分)
解答:{F1(0,0)F2(2,2)P(2+1/√2,2−1/√2)⇒{¯PF1=3¯PF2=1⇒2a=¯PF1−¯PF2=2⇒Γ:√(x−2)2+(y−2)2−√x2+y2=2⇒2xy−2x−2y+1=0
解答:c=(a+bi)3−47i⇒c+47i=(a+bi)3=a3−3ab2+(3a2b−b3)i⇒3a2b−b3=b(3a2−b2)=47⇒{3a2−b2=47b=1⇒a=4⇒c=a3−3ab2=64−12=52
解答:
假設¯CD=x⇒¯BD=4−x⇒¯AD2=¯AC2−¯CD2=¯AB2−¯BD2⇒25−x2=36−(4−x)2⇒x=58⇒¯AD=158√7⇒{A(0,158√7)B(−278,0)C(58,0)D(0,0)⇒{→AB=(−278,−158√7)→AD=(0,−158√7)→AC=(58,−158√7)⇒(0,−158√7)=x(−278,−158√7)+y(58,−158√7)⇒{x=5/32y=27/32⇒(x,y)=(532,2732)
解答:lim

解答:\alpha+ \beta +\gamma+ \delta ={5\over 4} \Rightarrow \cases{\alpha/2 +\beta/4+ \gamma/5+ \delta/8=1\\ (\alpha/2) \cdot (\beta/4) \cdot (\gamma/5) \cdot (\delta/8) =1/256} \\算幾不等式: \alpha/2 +\beta/4+ \gamma/5+ \delta/8 \ge 4\sqrt[4]{(\alpha/2) \cdot (\beta/4) \cdot (\gamma/5) \cdot (\delta/8)} \\ 等號剛好成立,即 \alpha/2 =\beta/4= \gamma/5= \delta/8=1/4 \Rightarrow \cases{\alpha=1/2\\ \beta=1\\ \gamma =5/4\\ \delta=2} \Rightarrow \alpha+\beta +\gamma+\delta={19\over 4} \\ \Rightarrow -{b\over 4}={19\over 4} \Rightarrow b= \bbox[red, 2pt]{-19}
解答:\cases{\log(2000xy) =3+\log 2+\log x+\log y=4+\log x\cdot \log y\\ \log(2yz) =\log 2+\log y+\log z=1+\log y\cdot \log z\\ \log zx=\log z+\log x=\log z\cdot \log x}\\ \Rightarrow \cases{\log x+\log y=\log 5+\log x\cdot \log y \cdots(1)\\ \log y+\log z=\log 5+\log y\cdot \log z \cdots(2)\\ \log z+\log x=\log z\cdot \log x \cdots(3)} \\ (1)-(2) =\log x-\log z=\log y(\log x-\log z) \Rightarrow (\log y-1)(\log x-\log z) =0\\ 若\log y=1 代入(1)\Rightarrow \log x+1=\log 5+\log x 矛盾,無解 \\ \log x=\log z代入(3) \Rightarrow 2\log x=(\log x)^2 \Rightarrow \log x(\log x-2)=0 \\\Rightarrow \cases{\log x=0 \Rightarrow x=1 \Rightarrow z=1 \Rightarrow y=5 \Rightarrow x+y+z=7\\ \log x=2 \Rightarrow x=100\Rightarrow z=100 \Rightarrow y=20 \Rightarrow x+y+z=220} \Rightarrow \bbox[red, 2pt]{7或200}

解答:A箱點數不是0 \Rightarrow A箱沒有5或沒有偶數\Rightarrow 有C^8_5+C^6_5=62種情形 \\ \Rightarrow A箱點數是0的情形有C^{10}_5-62=190 \\ A箱點數是0且B箱點數是0 \Rightarrow 兩箱皆有5及1個偶數\Rightarrow 有(C^8_4-C^4_4-C^4_4)\times 2=136 \\ \Rightarrow 條件機率={136\over 190} = \bbox[red, 2pt]{68\over 95}

解答:
解答:lim
解答:\cases{P(x_1,y_1) \\Q(x_2,y_2)} \;在\Gamma:x^2+2y^2=3上\Rightarrow \cases{\overline{PQ}中點M=((x_1+x_2)/2, (y_1+y_2)/2)\\ \overline{PQ}\bot L \Rightarrow \overline{PQ}斜率={y_2-y_1\over x_2-x_1} = -1 \\ x_1^2+2y_1^2 =3 \cdots(1) \\ x_2^2 +2y_2^2 =3\cdots(2)} \\ \Rightarrow (2)-(1) =(x_2^2-x_1^2)+ 2(y_2^2 -y_1^2) =0 \Rightarrow -{1\over 2} ={y_2^2-y_1^2\over x_2^2-x_1^2} ={y_2-y_1\over x_2-x_1} \cdot {y_2+y_1\over x_2+x_1} =-{y_2+y_1\over x_2+x_1} \\ \Rightarrow y_2+y_1= {1\over 2}(x_2+x_1) \Rightarrow M=(x_0,x_0/2) \in L \Rightarrow {1\over 2}x_0=x_0+m \Rightarrow x_0=-2m \\ \Rightarrow M(-2m,- m) \in \Gamma內部\Rightarrow 4m^2+2m^2\le 2 \Rightarrow m^2\le {1\over 3} \Rightarrow \bbox[red, 2pt]{-{\sqrt 3\over 3}\le m\le {\sqrt 3\over 3}}
解答:假設P(x,y,z) \Rightarrow \overline{PA}^2 +\overline{PB}^2 +\overline{PC}^2 =f(x,y,z)\\= (x-1)^2+(y-1)^2+ (z-1)^2 +(x-2)^2 +(y-4)^2+z^2 +(x-3)^2+(y-2)^2+(z-1)^2\\ 並令g(x,y,z)=x+y+z-6, 使用\text{ Lagrange's }算子求極值 \Rightarrow \cases{f_x= \lambda g_x\\ f_y= \lambda g_y\\ f_z= \lambda g_z\\ g=0} \\ \Rightarrow \cases{2(x-1)+2(x-2)+2(x-3)=6x-12= \lambda \\ 2(y-1)+ 2(y-4) +2(y-2)= 6y-14= \lambda \\ 2(z-1) +2z+2(z-1) = 6z-4=\lambda} \Rightarrow \cases{x=y-2/6\\ z=y-10/6} \\ \Rightarrow x+y+z-6=3y-2-6=0 \Rightarrow y={8\over 3} \Rightarrow \cases{x=7/3\\ z=1} \Rightarrow P= \bbox[red, 2pt]{({7\over 3},{8\over 3},1)}
解答:假設\triangle ABC中外接圓半徑R={1\over 2}, 且\cases{\angle A=135^\circ \\ \angle B=37^\circ \\ \angle C=8^\circ}, 則{\overline{BC} \over \sin \angle A} ={\overline{AC} \over \sin \angle B} = {\overline{AB} \over \sin \angle C} =2R=1 \\ \Rightarrow \cases{\overline{BC} =\sin 135^\circ =1/\sqrt 2 \\ \overline{AB}= \sin 8^\circ \\ \overline{AC} = \sin 37^\circ} \Rightarrow \cos \angle A=-{\sqrt 2\over 2}={\sin^2 37^\circ +\sin ^28-\sin^2 135^\circ \over 2\cdot \sin 37^\circ \sin 8^\circ} \\ \Rightarrow \sin^2 37^\circ +\sin ^28+ \sqrt 2\sin 37^\circ \sin 8^\circ= \sin^2 135^\circ = \bbox[red, 2pt]{1\over 2}
解答:\sqrt 3=\cos \alpha+\sin(\alpha +\beta) +\cos(\alpha+\beta) =\cos \alpha+\sin \alpha \cos \beta + \sin \beta \cos \alpha+\cos \alpha \cos\beta- \sin \alpha \sin \beta \\= \cos \alpha(1+\sin \beta+ \cos \beta) +\sin \alpha(\cos \beta-\sin \beta) =\sqrt{(1+\sin \beta+ \cos \beta)^2+ (\cos \beta-\sin \beta)^2} \sin(\alpha+ \gamma) \\ \le \sqrt{(1+\sin \beta+ \cos \beta)^2+ (\cos \beta-\sin \beta)^2} =\sqrt{3+2\sin \beta +2\cos \beta} \\ \Rightarrow 3\le 3+2\sin \beta +2\cos \beta \Rightarrow 2(\sin \beta+ \cos \beta)\ge 0 \Rightarrow \sin \beta+\cos \beta \ge 0 \Rightarrow \sin(\beta+{\pi\over 4})\ge 0 \\ \Rightarrow \beta= \bbox[red, 2pt]{3\pi\over 4}
解答:假設\triangle ABC中外接圓半徑R={1\over 2}, 且\cases{\angle A=135^\circ \\ \angle B=37^\circ \\ \angle C=8^\circ}, 則{\overline{BC} \over \sin \angle A} ={\overline{AC} \over \sin \angle B} = {\overline{AB} \over \sin \angle C} =2R=1 \\ \Rightarrow \cases{\overline{BC} =\sin 135^\circ =1/\sqrt 2 \\ \overline{AB}= \sin 8^\circ \\ \overline{AC} = \sin 37^\circ} \Rightarrow \cos \angle A=-{\sqrt 2\over 2}={\sin^2 37^\circ +\sin ^28-\sin^2 135^\circ \over 2\cdot \sin 37^\circ \sin 8^\circ} \\ \Rightarrow \sin^2 37^\circ +\sin ^28+ \sqrt 2\sin 37^\circ \sin 8^\circ= \sin^2 135^\circ = \bbox[red, 2pt]{1\over 2}
解答:\sqrt 3=\cos \alpha+\sin(\alpha +\beta) +\cos(\alpha+\beta) =\cos \alpha+\sin \alpha \cos \beta + \sin \beta \cos \alpha+\cos \alpha \cos\beta- \sin \alpha \sin \beta \\= \cos \alpha(1+\sin \beta+ \cos \beta) +\sin \alpha(\cos \beta-\sin \beta) =\sqrt{(1+\sin \beta+ \cos \beta)^2+ (\cos \beta-\sin \beta)^2} \sin(\alpha+ \gamma) \\ \le \sqrt{(1+\sin \beta+ \cos \beta)^2+ (\cos \beta-\sin \beta)^2} =\sqrt{3+2\sin \beta +2\cos \beta} \\ \Rightarrow 3\le 3+2\sin \beta +2\cos \beta \Rightarrow 2(\sin \beta+ \cos \beta)\ge 0 \Rightarrow \sin \beta+\cos \beta \ge 0 \Rightarrow \sin(\beta+{\pi\over 4})\ge 0 \\ \Rightarrow \beta= \bbox[red, 2pt]{3\pi\over 4}

解答:\alpha+ \beta +\gamma+ \delta ={5\over 4} \Rightarrow \cases{\alpha/2 +\beta/4+ \gamma/5+ \delta/8=1\\ (\alpha/2) \cdot (\beta/4) \cdot (\gamma/5) \cdot (\delta/8) =1/256} \\算幾不等式: \alpha/2 +\beta/4+ \gamma/5+ \delta/8 \ge 4\sqrt[4]{(\alpha/2) \cdot (\beta/4) \cdot (\gamma/5) \cdot (\delta/8)} \\ 等號剛好成立,即 \alpha/2 =\beta/4= \gamma/5= \delta/8=1/4 \Rightarrow \cases{\alpha=1/2\\ \beta=1\\ \gamma =5/4\\ \delta=2} \Rightarrow \alpha+\beta +\gamma+\delta={19\over 4} \\ \Rightarrow -{b\over 4}={19\over 4} \Rightarrow b= \bbox[red, 2pt]{-19}
解答:\cases{\log(2000xy) =3+\log 2+\log x+\log y=4+\log x\cdot \log y\\ \log(2yz) =\log 2+\log y+\log z=1+\log y\cdot \log z\\ \log zx=\log z+\log x=\log z\cdot \log x}\\ \Rightarrow \cases{\log x+\log y=\log 5+\log x\cdot \log y \cdots(1)\\ \log y+\log z=\log 5+\log y\cdot \log z \cdots(2)\\ \log z+\log x=\log z\cdot \log x \cdots(3)} \\ (1)-(2) =\log x-\log z=\log y(\log x-\log z) \Rightarrow (\log y-1)(\log x-\log z) =0\\ 若\log y=1 代入(1)\Rightarrow \log x+1=\log 5+\log x 矛盾,無解 \\ \log x=\log z代入(3) \Rightarrow 2\log x=(\log x)^2 \Rightarrow \log x(\log x-2)=0 \\\Rightarrow \cases{\log x=0 \Rightarrow x=1 \Rightarrow z=1 \Rightarrow y=5 \Rightarrow x+y+z=7\\ \log x=2 \Rightarrow x=100\Rightarrow z=100 \Rightarrow y=20 \Rightarrow x+y+z=220} \Rightarrow \bbox[red, 2pt]{7或200}
解答:\begin{array}{r} 1的個數& 4的個數& 數量\\\hline 0& 0 & 2^5=32\\ 1& 0&2^4\cdot 5= 80 \\ 2& 0& 2^3\cdot C^5_3=80 \\ 3& 0 & 2^2\cdot C^5_3=40 \\ 4& 0& 2\cdot 5=10 \\ 5& 0& 1\\\hdashline 0&1 & 80\\ 0& 2& 80\\ 0&3& 40\\ 0& 4&10\\ 0& 5& 1\\\hdashline 1& 1 & 80\\ 1& 2& 40\\ 1& 3& 10\\ 1& 4& 1 \\\hdashline 2& 1& 40\\ 2& 2& 10\\ 2& 3& 1 \\\hdashline 3& 1& 10\\ 3& 2& 1\\ \hdashline 4& 1& 1 \end{array} \\ \Rightarrow 合計\bbox[red, 2pt]{648}

解答:A箱點數不是0 \Rightarrow A箱沒有5或沒有偶數\Rightarrow 有C^8_5+C^6_5=62種情形 \\ \Rightarrow A箱點數是0的情形有C^{10}_5-62=190 \\ A箱點數是0且B箱點數是0 \Rightarrow 兩箱皆有5及1個偶數\Rightarrow 有(C^8_4-C^4_4-C^4_4)\times 2=136 \\ \Rightarrow 條件機率={136\over 190} = \bbox[red, 2pt]{68\over 95}
解答:\cases{A={ab\over bc} \\ B={a\over c}} \Rightarrow {10a+b\over 10b+c}={a\over c} 且符合\cases{a\lt c\\ a,c 互質\\ 10a+b\lt 10b+c\\ 10a+b與10b+c互質\\ 1\le a,b,c\le 9}\\ 只能從b=1-9一個一個試, 只有b=6或9有可能\\ \cases{b=6 \Rightarrow {a6\over 6c}={a\over c} \Rightarrow \cases{a=1, c=4\\ a=2, c=5} \\ b=9\Rightarrow {a9\over 9c}= {a\over c}\cases{a=1,c=5\\ a=4,c=8}} \Rightarrow A= \bbox[red, 2pt]{{16\over 64}, {26\over 65},{19\over 95}, {49\over 98}}
三、 計算證明題(請從答案卷第三頁開始作答,依序標明題號,並詳細寫出計算或證明過程,每一題 10 分,共 30 分)
解答:x=\sqrt 2+\sqrt[3]3 \Rightarrow (x-\sqrt 2)^3 =(\sqrt[3]3)^3=x^3-3\sqrt 2x^2+6x-2\sqrt 2=3 \\ \Rightarrow (x^3+6x-3)^2=(3\sqrt 2x^2+2\sqrt 2)^2 \Rightarrow x^6+36x^2+9+12x^4-36x-6x^3=18x^4+24x^2+8 \\ \Rightarrow x^6-18x^4-6x^3+12x^2-36x+1=0\\ 依勘根原理, x^6-18x^4-6x^3+12x^2-36x+1=0的有理根僅可能是\pm 1,\\ 因此\sqrt 2+\sqrt[3] 3不是有理根, 也就是\sqrt 2+\sqrt[3] 3是無理數\qquad \bbox[red, 2pt]{QED}
\textbf{(1) }假設\overline{AB}中點O(0,0)及 \angle OBC=\angle OCB=\theta \Rightarrow \angle BOC=\pi-2\theta \Rightarrow \cases{B(R,0)\\ C(R\cos(\pi-2\theta),R\sin(\pi-2\theta))} \\ \Rightarrow C(-R\cos 2\theta, R\sin 2\theta) \Rightarrow 梯形周長)= \overline{AB}+ \overline{CD}+ 2\overline{BC}\\=f(\theta) =2R-2R\cos 2\theta+ 2 R\sqrt{2+2\cos 2\theta} \Rightarrow f'(\theta) =4R\sin 2\theta-{4R\sin 2\theta\over \sqrt{2+2\cos 2\theta}} =0\\ \Rightarrow 2+2\cos 2\theta=1 \Rightarrow \cos 2\theta=-{1\over 2} \Rightarrow \theta= {\pi\over 3} \Rightarrow f( {\pi\over 3}) =2R+R+2R= \bbox[red, 2pt]{5R} \\ \textbf{(2) }當C\to B且C\to A時,面積趨近0,因此最小值\bbox[red, 2pt]{不存在}
解答:\textbf{(1) }X\sim G(p) \Rightarrow p(x) =P(X=x) =q^{x-1}p,其中q=1-p, x=1,2,\dots\\\qquad \Rightarrow E(X)= \sum_{x=1}^{\infty} x q^{x-1}p = p \sum_{x=1}^{\infty} x q^{x-1}= p{d\over dq}\sum_{x=0}^{\infty} q^{x} =p{d\over dq}\left( {1\over 1-q}\right) =p\cdot {1\over (1-q)^2} \\ \qquad =p\cdot {1\over p^2} ={1\over p} \Rightarrow E(X)={1\over p} \quad \bbox[red, 2pt]{QED} \\\textbf{(2 )} E(X(X-1)) =\sum_{x=1}^\infty x(x-1)q^{x-1}p =pq \sum_{x=1}^\infty x(x-1)q^{x-2} =pq {d^2 \over dq^2}\sum_{x=0}^\infty q^x =pq {d^2 \over dq^2} \left({1\over 1-q} \right) \\\qquad =pq\cdot {2\over (1-q)^3} ={2q\over p^2} \Rightarrow E(X^2)=E(X(X-1))+E(X)={2q\over p^2}+{1\over p} \\\qquad \Rightarrow Var(X) =E(X^2)-(E(X))^2 ={2q\over p^2}+{1\over p}-{1\over p^2} ={1-p\over p^2} \quad \bbox[red, 2pt]{QED}
解題僅供參考,其他教甄試題及詳解
解題僅供參考,其他教甄試題及詳解
沒有留言:
張貼留言