2025年6月16日 星期一

114年高師大附中教甄-數學詳解

 國立高雄師範大學附屬高級中學 114 學年度教師甄試

計算證明題:(每題 10 分,共 100 分,每題須詳述計算過程,否則不予計分)

解答:

{C(0,0)A(0,2)B(2,0)C(2,0)G(a,b)E=G90=(b,a)E+G2=D+F2F=(ab,a+b)AC:x+y=2FACab+a+b=2a=1{G(1,b)E(b,1)¯BE=3¯CG(b2)2+1=3(1+b2)b=21DEFG=¯DG2=1+(21)2=422
解答:z7=1(1z)(1+z+z2++z6)=01+z++z6=0z+z2++z6=1{α=z+z2+z4β=z3+z5+z6α+β=z+z2++z6=1αβ=(z+z2+z4)(z3+z5+z6)=z4(1+z+z2++z6+2z3)=z4(0+2z3)=2z7=2{α+β=1αβ=2α,βx2+x+2=0α=z+z2+z4=1±7i2
解答:g(x)=xf(x)dxg(x)=xf(x)ddx[f(x)+g(x)=x44x2+x7f(x)+g(x)=f(x)+xf(x)=x44x2+x7I(x)=exdx=ex2/2ex2/2f(x)+xex2/2f(x)=ex2/2(x44x2+x7)(ex2/2f(x))=ex2/2(x44x2+x7)ex2/2f(x)=ex2/2(x44x2+x7)dxex2/2f(x)=ex2/2(x37x+1)+Cf(x)=x37x+1+Cex2/2f(x)C=0f(x)=x37x+1
解答:

Case I 2xy02xyOQRA(a,b)OQR{2aba1(2ab)2abb2(2ab)(a,b)OQS,S=(1/2,1/2)Case II 2xy02xyPQOA(a,b)PQO(a,b)OQT,T=(1/2,3/2)OQSOQT=OTQS=¯OSd(y=x,y=x+1)=2212=12
解答:{A(0,0,0)B(2,0,2)C(0,2,2)D(2,2,0){E1=BCD:x+y+z=22E2=ACD:x+yz=0{A=(432,432,432)B=(23,432,23){AC=(432,132,132)AD=(132,132,432)n=AC×AD=(23,103,23){aACD=12||n||=3E3=ACD:x5y+z+42=0d(B,E3)=10293ACBD=13310293=10227
解答:Xgeometric(p){E(X)=1/pVar(X)=(1p)/p2Var(X)=E(X2)(E(X))2E(X2)=Var(X)+(E(X))2=1pp2+1p2=2pp2E(X2)=p1pS2pp2=180p1p180p3p2+3p2=0(5p1)(36p2+7p+2)=0p=15P(X=3)=(115)215=16125
解答:f(x)=|log(x)|f(1)=0a<1<a+b2<bf(a)=12f(b)=f(a+b2)loga=12logb=loga+b21a=b=a+b2{b=1a2a2+ab=2a32a+1=0(a1)(a2+a1)=0a=512b=1a2=235=5+32(a,b)=(512,5+32)
解答:(1) f(x)=x33x2+af(x)=3x26x=3x(x2)=0x=0,x=2{f(0)=a>0f(2)=a4<0f(0)f(2)<00<x<2f(x)=0(2) S=t0(x33x2+a)dx+t2(x33x2+a)dx=12t42t3+2at+42af(t)=0t33t2+a=0a=t3+3t2S=12t42t3+2t(t3+3t2)+42(t3+3t2)S=32t4+6t36t2+4(3) f(t)=32t4+6t36t2+4f(t)=6t3+18t212t=06t(t1)(t2)=0t=0,1,2{f(0)=4f(1)=5/2f(2)=452
解答:nk=14Skak+2=SnS1=a1=4a1a1+2a212a1=0a1=2(an,a10)an=SnSn1=nk=14Skak+2n1k=14Skak+2=4Snan+2Sn=14an(an+2)Sn=Sn1+an=14an(an+2)Sn1=14a2n12an=14an1(an1+2)a2n2an=a2n1+2an1(an1)2=(an1+1)2an1=an1+1an=an1+2=an2+4=an3+6==a1+2(n1)=2nan=2nSn=142n(2n+2)=n(n+1)Sn=n2+n
解答:{B(6,0)A(1,15)C(a,b){a=OAb=OBc=OC{ca=(a1,b15)cb=(a6,b)(ca)(cb)=(a1)(a6)+b(b15)=0Lagrange ,{f(a,b)=a2+b2g(a,b)=(a1)(a6)+b(b15){fa=λgafb=λgb{2a=(2a7)λ2b=(2b15)λab=2a72b15b=157ag(a,b)=032a2224a+147=0a=28+7108|c|=f(a,b)=a2+1549a2=87a=8728+7108=4+10

====================== END ==========================
解題僅供參考,其他教甄試題及詳解

沒有留言:

張貼留言