國立高雄師範大學附屬高級中學 114 學年度教師甄試
計算證明題:(每題 10 分,共 100 分,每題須詳述計算過程,否則不予計分)
解答:取{C(0,0)A(0,2)B(−2,0)C(2,0)G(a,b)⇒E=G旋轉90∘=(−b,a)⇒E+G2=D+F2⇒F=(a−b,a+b)又↔AC:x+y=2且F∈↔AC⇒a−b+a+b=2⇒a=1⇒{G(1,b)E(−b,1)¯BE=√3⋅¯CG⇒(b−2)2+1=3(1+b2)⇒b=√2−1⇒DEFG面積=¯DG2=1+(√2−1)2=4−2√2
解答:z7=1⇒(1−z)(1+z+z2+⋯+z6)=0⇒1+z+⋯+z6=0⇒z+z2+⋯+z6=−1假設{α=z+z2+z4β=z3+z5+z6⇒α+β=z+z2+⋯+z6=−1又αβ=(z+z2+z4)(z3+z5+z6)=z4(1+z+z2+⋯+z6+2z3)=z4(0+2z3)=2z7=2因此我們有{α+β=−1αβ=2⇒α,β是x2+x+2=0的兩根⇒α=z+z2+z4=−1±√7i2
解答:g(x)=∫xf(x)dx⇒g′(x)=xf(x)⇒ddx[f(x)+g(x)=x4−4x2+x−7⇒f′(x)+g′(x)=f′(x)+xf(x)=x4−4x2+x−7一階微分方程積分因子I(x)=e∫xdx=ex2/2⇒ex2/2f′(x)+xex2/2f(x)=ex2/2(x4−4x2+x−7)⇒(ex2/2f(x))′=ex2/2(x4−4x2+x−7)⇒ex2/2f(x)=∫ex2/2(x4−4x2+x−7)dx⇒ex2/2f(x)=ex2/2(x3−7x+1)+C⇒f(x)=x3−7x+1+Ce−x2/2f(x)為整係數多項⇒常數C=0⇒f(x)=x3−7x+1
解答:
解答:z7=1⇒(1−z)(1+z+z2+⋯+z6)=0⇒1+z+⋯+z6=0⇒z+z2+⋯+z6=−1假設{α=z+z2+z4β=z3+z5+z6⇒α+β=z+z2+⋯+z6=−1又αβ=(z+z2+z4)(z3+z5+z6)=z4(1+z+z2+⋯+z6+2z3)=z4(0+2z3)=2z7=2因此我們有{α+β=−1αβ=2⇒α,β是x2+x+2=0的兩根⇒α=z+z2+z4=−1±√7i2
解答:g(x)=∫xf(x)dx⇒g′(x)=xf(x)⇒ddx[f(x)+g(x)=x4−4x2+x−7⇒f′(x)+g′(x)=f′(x)+xf(x)=x4−4x2+x−7一階微分方程積分因子I(x)=e∫xdx=ex2/2⇒ex2/2f′(x)+xex2/2f(x)=ex2/2(x4−4x2+x−7)⇒(ex2/2f(x))′=ex2/2(x4−4x2+x−7)⇒ex2/2f(x)=∫ex2/2(x4−4x2+x−7)dx⇒ex2/2f(x)=ex2/2(x3−7x+1)+C⇒f(x)=x3−7x+1+Ce−x2/2f(x)為整係數多項⇒常數C=0⇒f(x)=x3−7x+1
解答:
Case I 2x−y≥0⇒2x≥y也就是△OQR⇒A(a,b)∈△OQR⇒{2a−b≤a≤1−(2a−b)2a−b≤b≤2−(2a−b)⇒(a,b)∈△OQS,其中S=(1/2,1/2)Case II 2x−y≤0⇒2x≤y也就是△PQO⇒A(a,b)∈△PQO⇒(a,b)∈△OQT,其中T=(1/2,3/2)△OQS∪△OQT=平行四邊形OTQS⇒面積=¯OS⋅d(y=x,y=x+1)=√22⋅1√2=12
解答:取{A(0,0,0)B(√2,0,√2)C(0,√2,√2)D(√2,√2,0)⇒{平面E1=△BCD:x+y+z=2√2平面E2=△ACD:−x+y−z=0⇒{A′=(43√2,43√2,43√2)B′=(−√23,43√2,−√23)⇒{→A′C=(−43√2,−13√2,−13√2)→A′D=(−13√2,−13√2,−43√2)⇒→n=→A′C×→A′D=(23,−103,23)⇒{a△A′CD=12||→n||=√3平面E3=△A′CD:x−5y+z+4√2=0⇒d(B′,E3)=10√29√3⇒四面體A′CB′D體積=13⋅√3⋅10√29√3=10√227
解答:欲求第三次才出現第一次成功的機率,因此假設X∼geometric(p)⇒{E(X)=1/pVar(X)=(1−p)/p2⇒Var(X)=E(X2)−(E(X))2⇒E(X2)=Var(X)+(E(X))2=1−pp2+1p2=2−pp2又E(X2)=p1−pS∞⇒2−pp2=180p1−p⇒180p3−p2+3p−2=0⇒(5p−1)(36p2+7p+2)=0⇒p=15⇒P(X=3)=(1−15)2⋅15=16125
解答:f(x)=|log(x)|⇒f(1)=0⇒a<1<a+b2<bf(a)=12f(b)=f(a+b2)⇒−loga=12logb=loga+b2⇒1a=√b=a+b2⇒{b=1a2a2+ab=2⇒a3−2a+1=0⇒(a−1)(a2+a−1)=0⇒a=√5−12⇒b=1a2=23−√5=√5+32⇒(a,b)=(√5−12,√5+32)
解答:(1) f(x)=x3−3x2+a⇒f′(x)=3x2−6x=3x(x−2)=0⇒x=0,x=2⇒{f(0)=a>0f(2)=a−4<0⇒f(0)f(2)<0⇒在0<x<2之間f(x)=0恰有一實根故得證(2) S=∫t0(x3−3x2+a)dx+∫t2(x3−3x2+a)dx=12t4−2t3+2at+4−2af(t)=0⇒t3−3t2+a=0⇒a=−t3+3t2⇒S=12t4−2t3+2t(−t3+3t2)+4−2(−t3+3t2)⇒S=−32t4+6t3−6t2+4(3) f(t)=−32t4+6t3−6t2+4⇒f′(t)=−6t3+18t2−12t=0⇒−6t(t−1)(t−2)=0⇒t=0,1,2⇒{f(0)=4f(1)=5/2f(2)=4⇒最小值為52
解答:n∑k=14Skak+2=Sn⇒S1=a1=4a1a1+2⇒a21−2a1=0⇒a1=2(an為正數,a1≠0)an=Sn−Sn−1=n∑k=14Skak+2−n−1∑k=14Skak+2=4Snan+2⇒Sn=14an(an+2)⇒Sn=Sn−1+an=14an(an+2)⇒Sn−1=14a2n−12an=14an−1(an−1+2)⇒a2n−2an=a2n−1+2an−1⇒(an−1)2=(an−1+1)2⇒an−1=an−1+1⇒an=an−1+2=an−2+4=an−3+6=⋯=a1+2(n−1)=2n⇒an=2n⇒Sn=14⋅2n⋅(2n+2)=n(n+1)⇒Sn=n2+n
解答:{B(6,0)A(1,√15)C(a,b)⇒{→a=→OA→b=→OB→c=→OC⇒{→c−→a=(a−1,b−√15)→c−→b=(a−6,b)⇒(→c−→a)⋅(→c−→b)=(a−1)(a−6)+b(b−√15)=0再用Lagrange 算子求極值,取{f(a,b)=a2+b2g(a,b)=(a−1)(a−6)+b(b−√15)⇒{fa=λgafb=λgb⇒{2a=(2a−7)λ2b=(2b−√15)λ⇒ab=2a−72b−√15⇒b=√157a代入g(a,b)=0⇒32a2−224a+147=0⇒a=28+7√108⇒|→c|=√f(a,b)=√a2+1549a2=87a=87⋅28+7√108=4+√10 ====================== END ==========================
解題僅供參考,其他教甄試題及詳解
解答:取{A(0,0,0)B(√2,0,√2)C(0,√2,√2)D(√2,√2,0)⇒{平面E1=△BCD:x+y+z=2√2平面E2=△ACD:−x+y−z=0⇒{A′=(43√2,43√2,43√2)B′=(−√23,43√2,−√23)⇒{→A′C=(−43√2,−13√2,−13√2)→A′D=(−13√2,−13√2,−43√2)⇒→n=→A′C×→A′D=(23,−103,23)⇒{a△A′CD=12||→n||=√3平面E3=△A′CD:x−5y+z+4√2=0⇒d(B′,E3)=10√29√3⇒四面體A′CB′D體積=13⋅√3⋅10√29√3=10√227
解答:欲求第三次才出現第一次成功的機率,因此假設X∼geometric(p)⇒{E(X)=1/pVar(X)=(1−p)/p2⇒Var(X)=E(X2)−(E(X))2⇒E(X2)=Var(X)+(E(X))2=1−pp2+1p2=2−pp2又E(X2)=p1−pS∞⇒2−pp2=180p1−p⇒180p3−p2+3p−2=0⇒(5p−1)(36p2+7p+2)=0⇒p=15⇒P(X=3)=(1−15)2⋅15=16125
解答:f(x)=|log(x)|⇒f(1)=0⇒a<1<a+b2<bf(a)=12f(b)=f(a+b2)⇒−loga=12logb=loga+b2⇒1a=√b=a+b2⇒{b=1a2a2+ab=2⇒a3−2a+1=0⇒(a−1)(a2+a−1)=0⇒a=√5−12⇒b=1a2=23−√5=√5+32⇒(a,b)=(√5−12,√5+32)
解答:(1) f(x)=x3−3x2+a⇒f′(x)=3x2−6x=3x(x−2)=0⇒x=0,x=2⇒{f(0)=a>0f(2)=a−4<0⇒f(0)f(2)<0⇒在0<x<2之間f(x)=0恰有一實根故得證(2) S=∫t0(x3−3x2+a)dx+∫t2(x3−3x2+a)dx=12t4−2t3+2at+4−2af(t)=0⇒t3−3t2+a=0⇒a=−t3+3t2⇒S=12t4−2t3+2t(−t3+3t2)+4−2(−t3+3t2)⇒S=−32t4+6t3−6t2+4(3) f(t)=−32t4+6t3−6t2+4⇒f′(t)=−6t3+18t2−12t=0⇒−6t(t−1)(t−2)=0⇒t=0,1,2⇒{f(0)=4f(1)=5/2f(2)=4⇒最小值為52
解答:n∑k=14Skak+2=Sn⇒S1=a1=4a1a1+2⇒a21−2a1=0⇒a1=2(an為正數,a1≠0)an=Sn−Sn−1=n∑k=14Skak+2−n−1∑k=14Skak+2=4Snan+2⇒Sn=14an(an+2)⇒Sn=Sn−1+an=14an(an+2)⇒Sn−1=14a2n−12an=14an−1(an−1+2)⇒a2n−2an=a2n−1+2an−1⇒(an−1)2=(an−1+1)2⇒an−1=an−1+1⇒an=an−1+2=an−2+4=an−3+6=⋯=a1+2(n−1)=2n⇒an=2n⇒Sn=14⋅2n⋅(2n+2)=n(n+1)⇒Sn=n2+n
解答:{B(6,0)A(1,√15)C(a,b)⇒{→a=→OA→b=→OB→c=→OC⇒{→c−→a=(a−1,b−√15)→c−→b=(a−6,b)⇒(→c−→a)⋅(→c−→b)=(a−1)(a−6)+b(b−√15)=0再用Lagrange 算子求極值,取{f(a,b)=a2+b2g(a,b)=(a−1)(a−6)+b(b−√15)⇒{fa=λgafb=λgb⇒{2a=(2a−7)λ2b=(2b−√15)λ⇒ab=2a−72b−√15⇒b=√157a代入g(a,b)=0⇒32a2−224a+147=0⇒a=28+7√108⇒|→c|=√f(a,b)=√a2+1549a2=87a=87⋅28+7√108=4+√10 ====================== END ==========================
解題僅供參考,其他教甄試題及詳解
沒有留言:
張貼留言