Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年5月31日 星期六

114年台北陽明高中教甄-數學詳解

 臺北市立陽明高級中學 114 學年度正式教師甄選高中數學科

一、填充題(合計 12 題,每題 5 分)

解答(x+y+2027)2=x2+y2+20272+2(xy+2027x+2027y)=x2+y2+20272xy+2027x+2027y=0(x+2027)(y+2027)=20272x+2027y+2027xy202720270020272027202722027220272120272202720261202722026202722027202721202722027202812027220282027220276


解答1x+1y=n1n=11n1x+1y+1n=1(x,y,n)=(2,3,6),(2,4,4),(2,6,3),(3,6,2)(x,y)=(2,3),(2,4),(2,5),(3,6)

解答

OE=99=3y=π43(16y2)dy=π[16y13y3]|43=113π
解答
y=xx2x=12±14y=π1/40(1214y2)2dyπ1/40(12+14y2)2dy=π(27321132)=π2

解答

L:{3xz6=0y=0{A=Lxy=(23,0,0)B=Lz=(0,0,6){P(0,0,r),rQLABOPBQ(AAA)¯OA¯AB=¯PQ¯PB2343=r6rr=2P(0,0,2)

解答{2:5+3=813:x+y=5,H23=44:x+y+z=5,H32=65:x+y+z+w=5,H41=46:1+3+1+1+1+1=8,1,x,y,z,wN=61+4+6+4+1=616=38


解答
P,Q,R,SP,Q,Rx=k¯PF¯PP=¯QF¯QQ=¯RF¯RR¯PFkx1=4k4=¯RFkx2¯PF,4,¯RFkx1,k4,kx22(k4)=(kx1)+(kx2)x1+x2=8
解答PA1+PA2++PA17=(PO+OA1)+(PO+OA2)++(PO+OA17)=17PO+(OA1+OA2++OA17)=17PO=17(32,12)2(PA1+PA2++PA17)=34(32,12)=(173,17)

解答2x63x5+4x43x3+4x23x+2=(x2+x+1)(x2x+1)(2x23x+2)=0x={(1±3i)/2(1±3i)/2(3±7i)/41+3i2,3+7i4=5+23i+7i4
解答1+1n2+1(n+1)2=1+(n+1)2+n2n2(n+1)2=1+2n2+2n+1n2(n+1)2=1+2n(n+2)+1n2(n+1)2=1+2n(n+1)+1n2(n+1)2=(1+1n(n+1))2=1+1n(n+1)=1+1n1n+1=(1+1112)+(1+1213)++(1+1202512026)=202612026=202520252026
解答4+54cosx+54+514cosx+531<sinx4cosx+5<1y=sinx4cosx+5y2=sin2x4cosx+5=1cos2x4cosx+5cos2x+4y2cosx+5y21=0cosx016y420y2+4=04(4y21)(y21)0(y+1)(2y+1)(2y1)(y1)0{y1()1/2y1/2y1()y[12,12]

解答

logx+y1x2>logx+yy{1x2>0y>0x+y>0{1x2>y, if x+y>11x2<y, if x+y<1{:x+y>1x2+y2<1:0<x+y<1x2+y2>1x>1{=π412=12+(1π4)÷2=4+π8


二、計算題(合計 4 題,每題 10 分)

解答

f(x)=g(x)x=1,4[1,4]f(x)g(x)h(x)=f(x)g(x)=x2+5x4=(x52)2+94{P(5/2,f(5/2))Q(5/2,g(5/2))¯PQ=94

解答x=120(a2+b)20=(14p2+q)100{a=2b2p=4q+1(2x+1)20(ax+b)20=(x2+px+q)10{x20220a20=220220b20=220(1b20)x2011b20=1220b20=11220=10485751048576x=11(a+b)20=(1p+q)101b20=1220=(1p+q)10{{1p+q=142p=4q+1{p=1q=1/4{1p+q=142p=4q+1{p=2q=3/41b20=(3/4)10(x=0)(b20,p,q)=(10485751048576,1,14)


解答

{A+C=180GOF+C=180A=GOFAHEOGF¯AH=¯AE=43rA+HOE=180cosA=cosHOE16r2/9+16r2/98232r2/9=r2+r2822r250r2=2r=5{D+B=180EOF+B=180D=EOFcosD=cosEOF=2r2722r2=150D+GOH=180cosGOH=150=2r2¯GH22r2=50¯GH250¯GH=51
解答

====================== END ==========================
解題僅供參考,其他教甄試題及詳解




沒有留言:

張貼留言