新北市立國民中學 114 學年度教師聯合甄選數學科試題
選擇題: 共 40 題,總分 100 分。第 1~40 題,每題 2.5 分。
解答:{12/4=312×3/4=9⇒{Q1=(a3+a4)/2=(3.2+3.4)/2=3.3Q3=(a9+a10)/2=(3.8+3.8)/2=3.8⇒IQR=Q3−Q1=3.8−3.3=0.5,故選(A)解答:S=a1+a2+⋯+a10=a(1+r+⋯+r9)=a⋅1−r101−r=4⋅1−1/10241/2=8⋅10231024≈8,故選(D)
解答:{A(−1,3)B(2,7)C(5,3)⇒a△ABC=12‖−131271531‖=12⋅|−24|=12,故選(B)
解答:只需考慮(A),(D)⇒{(A)ˉx=(1+2+4+5+6)/5=3.6⇒∑|x−ˉx|2=2.62+1.62+0.42+1.42+2.42(D)ˉx=(1+4+6+8+9)/5=5.6⇒∑|x−ˉx|2=4.62+1.62+0.42+2.42+3.42⇒顯然(D)比較大,故選(D)
解答:419×533=238×533=25×1033=32×1033為35位數,故選(B)
解答:x+2x−3<2⇒x+2x−3−2<0⇒−x+8x−3<0⇒(x−3)(−x+8)<0⇒(x−3)(x−8)>0⇒x>8或x<3,故選(A)
解答:連抽2球{都是紅球機率=(5/9)(4/8)=5/18都是藍球機率=(4/9)(3/8)=1/6⇒518+16=49,故選(D)
解答:√64+32√3−√97+56√3=√64+2√768−√97+2√2352=(√48+√16)−(√49+√48)=4√3+4−7−4√3=−3,故選(A)
解答:(A)◯:a,b,c皆是3的倍數⇒(a+b+c)是3的倍數⇒(a+b+c)2是9的倍數(B)×{a=15b=12c=21⇒a+b+c=48不是9的倍數(C)×{a=15b=12c=42⇒a+b+c=69不是2的倍數(D)×{a=15b=12c=42⇒a2+b2+c2=2133不是18的倍數,故選(A)
解答:
假設正八邊形邊長為a,每一內角為(8−2)⋅1808=135∘⇒a+√22a+√22a=2⇒a=21+√2=2(√2−1),故選(D)
解答:12+14+⋯+112=110+12+6+4+3+224=110+2724=110+1+18⇒需刪除110及18,故選(D)
解答:依題意:5人=3男+1女+1師或3男+2女,因此有C63C41C21+C63C42=160+120=280,故選(B)
解答:y=f(x)=3x+2x−1⇒3x+2=xy−y⇒x(y−3)=y+2⇒x=y+2y−3,故選(A)
解答:{x≥3⇒|x−5|=1⇒{x≥5⇒x−5=1⇒x=63≤x≤5⇒5−x=1⇒x=4x≤3⇒|1−x|=1⇒{x≤1⇒1−x=1⇒x=01≤x≤3⇒x−1=1⇒x=2⇒x=0,2,4,6,共四個解,故選(D)
解答:log2(x+3)+log2(x−4)=log2[(x+3)(x−4)]=3⇒(x+3)(x−4)=23=8⇒x2−x−20=0⇒(x−5)(x+4)=0⇒x=5(x=−4不合,違反x−4>0),故選(C)
解答:{√x+1=2x≤33x−2=2x>3⇒{x=3x=4/3違反x>3,故選(A)
解答:sin330∘×tan(−585∘)+cos930∘×tan420∘=−sin30∘×tan45∘+(−cos30∘)×tan60∘=−12×(−1)−√32×√3=12−32=−1,故選(B)
解答:(B)×:rank(A)=n⇒A−1存在⇒det(A)≠0(C)×:det(A)=det(At)(D)×:AA−1=I⇒det(AA−1)=det(A)det(A−1)=1⇒det(A−1)=1/det(A),故選(A)
解答:f(x)=ax2+bx+c⇒{f(x+1)−f(x)=2ax+a+bf(x+2)−f(x+1)=2ax+3a+bf(x+3)−f(x+2)=2ax+5a+b⇒{f(2024)−f(2023)=4−2=2=2a⋅2023+a+bf(2025)−f(2024)=7−4=3=2a⋅2023+3a+bf(2026)−f(2025)=f(2026)−7=2a⋅2023+5a+b⇒{a=1/2b=−4043/2⇒f(2026)=7+2023+52−40432=11,故選(C)
解答:{x=5⇒{3x+1=36=72922x−1=29=512x=6⇒{3x+1=37=218722x−1=211=2048x=7⇒{3x+1=38=656122x−1=213=8192x=8⋯⇒x=6兩式比較接近,故選(B)
解答:g(x−2)−1=f(x)⇒向右2單位再向下1單位,故選(A)
解答:P=(x+y=7)∩(2x−y=5)=(4,3)L垂直4x+3y=10⇒L:3x−4y=k,又通過Q(1,2)⇒k=−5⇒d((4,3),3x−4y+5=0)=55=1,故選(A)
解答:{a=2b+cb=2c+d2c=d+a+1d=a−c⇒{b=2c+d2c=d+2b+c+1d=2b+c−c⇒{b=2c+dc=d+2b+1d=2b⇒b=2(d+2b+1)+2b⇒b=2(2b+2b+1)+2b=8b+2+2b⇒9b=−2⇒b=−29,故選(D)
解答:2log(a−2b)=loga+logb⇒log(a−2b)2=logab⇒(a−2b)2=ab⇒a2−5ab+4b2=0⇒(a−4b)(a−b)=0⇒a=4b(a>2b⇒a−b≠0)⇒a−ba+b=4b−b4b+b=35,故選(C)
解答:{x=10a+dy=10b+dz=100c+10c+c⇒z=xy⇒100c+10c+c=100ab+10(ad+bd)+d2⇒c是一個完全平方數⇒c=1,4,9⇒{111=3×37非兩個二位數相乘444=12×37兩個二位數的個位數字不同999=27×37⇒{(a,b,c,d)=(2,3,9,7)(a,b,c,d)=(3,2,9,7)⇒a+b+c+d=21,故選(A)
解答:{a+1/b=1b+1/c=2c+1/a=5⇒c=5−1a=5a−1a⇒b=2−1c=2−a5a−1=9a−25a−1⇒a+5a−19a−2=1⇒81a2−54a+9=0⇒9(3a−1)2=0⇒a=13⇒c=2⇒b=32⇒abc=13⋅32⋅2=1⇒√abc=1,故選(C)
解答:ab=8⇒a2b+ab2+a+b=ab(a+b)+(a+b)=(ab+1)(a+b)=9(a+b)=81⇒a+b=9⇒(a+b)2=a2+b2+2ab=81⇒a2+b2=81−2⋅8=65,故選(C)
解答:
解答:12+14+⋯+112=110+12+6+4+3+224=110+2724=110+1+18⇒需刪除110及18,故選(D)
解答:依題意:5人=3男+1女+1師或3男+2女,因此有C63C41C21+C63C42=160+120=280,故選(B)
解答:y=f(x)=3x+2x−1⇒3x+2=xy−y⇒x(y−3)=y+2⇒x=y+2y−3,故選(A)
解答:{x≥3⇒|x−5|=1⇒{x≥5⇒x−5=1⇒x=63≤x≤5⇒5−x=1⇒x=4x≤3⇒|1−x|=1⇒{x≤1⇒1−x=1⇒x=01≤x≤3⇒x−1=1⇒x=2⇒x=0,2,4,6,共四個解,故選(D)
解答:log2(x+3)+log2(x−4)=log2[(x+3)(x−4)]=3⇒(x+3)(x−4)=23=8⇒x2−x−20=0⇒(x−5)(x+4)=0⇒x=5(x=−4不合,違反x−4>0),故選(C)
解答:{√x+1=2x≤33x−2=2x>3⇒{x=3x=4/3違反x>3,故選(A)
解答:sin330∘×tan(−585∘)+cos930∘×tan420∘=−sin30∘×tan45∘+(−cos30∘)×tan60∘=−12×(−1)−√32×√3=12−32=−1,故選(B)
解答:(B)×:rank(A)=n⇒A−1存在⇒det(A)≠0(C)×:det(A)=det(At)(D)×:AA−1=I⇒det(AA−1)=det(A)det(A−1)=1⇒det(A−1)=1/det(A),故選(A)
解答:f(x)=ax2+bx+c⇒{f(x+1)−f(x)=2ax+a+bf(x+2)−f(x+1)=2ax+3a+bf(x+3)−f(x+2)=2ax+5a+b⇒{f(2024)−f(2023)=4−2=2=2a⋅2023+a+bf(2025)−f(2024)=7−4=3=2a⋅2023+3a+bf(2026)−f(2025)=f(2026)−7=2a⋅2023+5a+b⇒{a=1/2b=−4043/2⇒f(2026)=7+2023+52−40432=11,故選(C)
解答:{x=5⇒{3x+1=36=72922x−1=29=512x=6⇒{3x+1=37=218722x−1=211=2048x=7⇒{3x+1=38=656122x−1=213=8192x=8⋯⇒x=6兩式比較接近,故選(B)
解答:g(x−2)−1=f(x)⇒向右2單位再向下1單位,故選(A)
解答:P=(x+y=7)∩(2x−y=5)=(4,3)L垂直4x+3y=10⇒L:3x−4y=k,又通過Q(1,2)⇒k=−5⇒d((4,3),3x−4y+5=0)=55=1,故選(A)
解答:{a=2b+cb=2c+d2c=d+a+1d=a−c⇒{b=2c+d2c=d+2b+c+1d=2b+c−c⇒{b=2c+dc=d+2b+1d=2b⇒b=2(d+2b+1)+2b⇒b=2(2b+2b+1)+2b=8b+2+2b⇒9b=−2⇒b=−29,故選(D)
解答:2log(a−2b)=loga+logb⇒log(a−2b)2=logab⇒(a−2b)2=ab⇒a2−5ab+4b2=0⇒(a−4b)(a−b)=0⇒a=4b(a>2b⇒a−b≠0)⇒a−ba+b=4b−b4b+b=35,故選(C)
解答:{x=10a+dy=10b+dz=100c+10c+c⇒z=xy⇒100c+10c+c=100ab+10(ad+bd)+d2⇒c是一個完全平方數⇒c=1,4,9⇒{111=3×37非兩個二位數相乘444=12×37兩個二位數的個位數字不同999=27×37⇒{(a,b,c,d)=(2,3,9,7)(a,b,c,d)=(3,2,9,7)⇒a+b+c+d=21,故選(A)
解答:{a+1/b=1b+1/c=2c+1/a=5⇒c=5−1a=5a−1a⇒b=2−1c=2−a5a−1=9a−25a−1⇒a+5a−19a−2=1⇒81a2−54a+9=0⇒9(3a−1)2=0⇒a=13⇒c=2⇒b=32⇒abc=13⋅32⋅2=1⇒√abc=1,故選(C)
解答:ab=8⇒a2b+ab2+a+b=ab(a+b)+(a+b)=(ab+1)(a+b)=9(a+b)=81⇒a+b=9⇒(a+b)2=a2+b2+2ab=81⇒a2+b2=81−2⋅8=65,故選(C)
解答:
假設正方形ABCD邊長為a⇒{a△ABG=a(a+4)/2a△ADE=a(a−4)/2a△EFG=8⇒a△AEG=a2+42−a(a+4)2−a(a−4)2−8=a2+16−a2−8=8,故選(C)
解答:ab=888⋯8×55⋯5=8(11⋯1)×5(11⋯1)=40×(11⋯1)2=10×(22⋯2)2⇒9ab=10×(66⋯6)2的數字和=(66⋯6)2的數字和=900證明:{62=36⇒數字和=9=9×1662=4356⇒數字和=18=9×26662=443556⇒數字和=27=9×3⋯n個⏞66⋯62的數字和=9n⇒100個⏞66⋯6的數字和=9×100=900,故選(B)
解答:\cos^2 80^\circ+ \cos^2160^\circ+ \cos80^\circ \cos160^\circ = \cos 80^\circ (\cos 80^\circ+ \cos 160^\circ) + \cos^2160^\circ \\= 2\cos 80^\circ \cos 120^\circ \cos 40^\circ + \cos^2 20^\circ = -\cos 80^\circ \cos 40^\circ + \cos^2 20^\circ \\=-{1\over 2}(\cos 120^\circ+ \cos 40^\circ) +{1\over 2}(\cos 40^\circ +1) ={1\over 4}-{1\over 2}\cos 40^\circ+{1\over 2}\cos 40^\circ+{1\over 2}={3\over 4},故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}單選題第8題相同
解答:\cases{A_n(1/n,0) \\B_n(0,1/(n+1))} \Rightarrow S_n={1\over 2}\cdot {1\over n}\cdot {1\over n+1}={1\over 2}\left({1\over n}-{1\over n+1} \right) \\ \Rightarrow S_1+S_2+\cdots+S_{2025} ={1\over 2} \left({1\over 1}-{1\over 2}+ {1\over 2}-{1\over 3}+ \cdots +{1\over 2025}-{1\over 2026} \right) ={1\over 2} \left(1-{1\over 2026} \right) \\={2025\over 4052},故選\bbox[red, 2pt]{(B)}
解答:\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdots \tan 89^\circ \\=[\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 44^\circ] \cdot \tan 45^\circ \cdot [\tan(90^\circ-44^\circ)\cdot \tan(90^\circ-43^\circ) \cdots \tan (90^\circ-1^\circ)] \\=[\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 44^\circ] \cdot \tan 45^\circ \cdot [\cot 44^\circ\cdot \cot 43^\circ \cdots \cot 1^\circ] \\= [\tan 1^\circ \cot 1^\circ] [\tan 2^\circ \cot 2^\circ] \cdots[\tan 44^\circ \cot 44^\circ] \tan 45^\circ 1\cdot 1\cdots 1=1 \\ \Rightarrow \log(\tan 1^\circ) +\log(\tan 2^\circ)+ \cdots+\log(\tan 89^\circ) =\log (\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 89^\circ) \\=\log 1=0,故選\bbox[red, 2pt]{(B)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}單選題第6題相同
解答:(A)\times: f(x)=(ax+b)q(x)+r =a(x+{b\over a})q(x)+r \Rightarrow 商=a\cdot q(x) \\(B)\times: f(x)=(ax+b)q(x)+r \Rightarrow xf(x)=x(ax+b)q(x)+rx =x(ax+b)q(x)+{r\over a}(ax+b)-{rb\over a} \\ \qquad \Rightarrow xf(x)=(ax+b)(xq(x)+{r\over a})-{br\over a} \Rightarrow \cases{商:xq(x)+r/a\\ 餘式:-br/a} \\(C) \bigcirc: 見(B)\\ (D)\times: x^2f(x)=x^2(ax+b)q(x)+rx^2 =x^2(ax+b)q(x)+({r\over a}x-{br\over a^2})(ax+b)+{b^2r\over a^2} \\ \qquad \Rightarrow x^2f(x)=(ax+b)(x^2q(x)+{r\over a}x-{br\over a^2}) +{b^2r\over a^2} \Rightarrow \cases{商:x^2q(x)+rx/a-{br/a^2}\\餘:b^2r/a^2} \\,故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}多選題第3題相同
解答:
解答:ab=888⋯8×55⋯5=8(11⋯1)×5(11⋯1)=40×(11⋯1)2=10×(22⋯2)2⇒9ab=10×(66⋯6)2的數字和=(66⋯6)2的數字和=900證明:{62=36⇒數字和=9=9×1662=4356⇒數字和=18=9×26662=443556⇒數字和=27=9×3⋯n個⏞66⋯62的數字和=9n⇒100個⏞66⋯6的數字和=9×100=900,故選(B)
解答:\cos^2 80^\circ+ \cos^2160^\circ+ \cos80^\circ \cos160^\circ = \cos 80^\circ (\cos 80^\circ+ \cos 160^\circ) + \cos^2160^\circ \\= 2\cos 80^\circ \cos 120^\circ \cos 40^\circ + \cos^2 20^\circ = -\cos 80^\circ \cos 40^\circ + \cos^2 20^\circ \\=-{1\over 2}(\cos 120^\circ+ \cos 40^\circ) +{1\over 2}(\cos 40^\circ +1) ={1\over 4}-{1\over 2}\cos 40^\circ+{1\over 2}\cos 40^\circ+{1\over 2}={3\over 4},故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}單選題第8題相同
解答:\cases{A_n(1/n,0) \\B_n(0,1/(n+1))} \Rightarrow S_n={1\over 2}\cdot {1\over n}\cdot {1\over n+1}={1\over 2}\left({1\over n}-{1\over n+1} \right) \\ \Rightarrow S_1+S_2+\cdots+S_{2025} ={1\over 2} \left({1\over 1}-{1\over 2}+ {1\over 2}-{1\over 3}+ \cdots +{1\over 2025}-{1\over 2026} \right) ={1\over 2} \left(1-{1\over 2026} \right) \\={2025\over 4052},故選\bbox[red, 2pt]{(B)}
解答:\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdots \tan 89^\circ \\=[\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 44^\circ] \cdot \tan 45^\circ \cdot [\tan(90^\circ-44^\circ)\cdot \tan(90^\circ-43^\circ) \cdots \tan (90^\circ-1^\circ)] \\=[\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 44^\circ] \cdot \tan 45^\circ \cdot [\cot 44^\circ\cdot \cot 43^\circ \cdots \cot 1^\circ] \\= [\tan 1^\circ \cot 1^\circ] [\tan 2^\circ \cot 2^\circ] \cdots[\tan 44^\circ \cot 44^\circ] \tan 45^\circ 1\cdot 1\cdots 1=1 \\ \Rightarrow \log(\tan 1^\circ) +\log(\tan 2^\circ)+ \cdots+\log(\tan 89^\circ) =\log (\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 89^\circ) \\=\log 1=0,故選\bbox[red, 2pt]{(B)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}單選題第6題相同
解答:(A)\times: f(x)=(ax+b)q(x)+r =a(x+{b\over a})q(x)+r \Rightarrow 商=a\cdot q(x) \\(B)\times: f(x)=(ax+b)q(x)+r \Rightarrow xf(x)=x(ax+b)q(x)+rx =x(ax+b)q(x)+{r\over a}(ax+b)-{rb\over a} \\ \qquad \Rightarrow xf(x)=(ax+b)(xq(x)+{r\over a})-{br\over a} \Rightarrow \cases{商:xq(x)+r/a\\ 餘式:-br/a} \\(C) \bigcirc: 見(B)\\ (D)\times: x^2f(x)=x^2(ax+b)q(x)+rx^2 =x^2(ax+b)q(x)+({r\over a}x-{br\over a^2})(ax+b)+{b^2r\over a^2} \\ \qquad \Rightarrow x^2f(x)=(ax+b)(x^2q(x)+{r\over a}x-{br\over a^2}) +{b^2r\over a^2} \Rightarrow \cases{商:x^2q(x)+rx/a-{br/a^2}\\餘:b^2r/a^2} \\,故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}多選題第3題相同
解答:

假設\cases{\overline{EG} \bot \overline{AB}且\overline{EG}=h \\ a\triangle DEF=x} \Rightarrow \cases{a\triangle AFE= \overline{AF} \cdot h/2\\ a\triangle BFD = \overline{BF}\cdot h/2\\ a\triangle DEF=\overline{DE}\cdot h/2} \Rightarrow \triangle AFE: \triangle BFD:\triangle DEF=\overline{AF}:\overline{BF} :\overline{DE} \\ \Rightarrow {15\over \overline{AF}} ={9\over \overline{BF}} ={x\over \overline{DE}} \Rightarrow {x\over \overline{DE}} ={15+9\over \overline{AF}+ \overline{BF}} ={24\over \overline{AB}} \Rightarrow {\overline{DE} \over \overline{AB}} ={x\over 24}\\ 又\overline{DE} \parallel \overline{AB} \Rightarrow {\triangle CDE \over \triangle ABC}={32\over x+56} ={\overline{DE}^2 \over \overline{AB}^2} ={x^2\over 24^2} \Rightarrow x^3+56x^2=18432 \\\Rightarrow x^2(x+56)=16^2\cdot (16+56) \Rightarrow x=16 \Rightarrow {\triangle DEF \over \triangle ABC}={x\over x+56}={16\over 72} ={2\over 9},故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://www.sec.ntnu.edu.tw/uploads/asset/data/625640a6381784d09345bc2f/07-99058-%E4%B8%AD%E5%AD%B8%E7%94%9F%E9%80%9A%E8%A8%8A%E8%A7%A3%E9%A1%8C%E7%AC%AC75%E6%9C%9F%E9%A1%8C%E7%9B%AE%E5%8F%83%E8%80%83%E8%A7%A3%E7%AD%94%E5%8F%8A%E8%A9%95%E8%A8%BB(%E6%9C%88%E5%88%8A).pdf}{科學教育月刊第332期問題編號《7503》}相同
解答:\cases{x^3-y^3=(x-y)(x^2+xy+y^2) =7(x-y) \\ x^3+y^3=(x+y)(x^2-xy+y^2) =5(x+y)} \Rightarrow \cases{(x-y)(x^2+xy+y^2-7)=0\\ (x+y)(x^2-xy+y^2-5)=0} \\ 由於\cases{直線L_1:x=y\\ 直線L_2: x=-y\\ 斜橢圓\Gamma_1:x^2+xy+y^2=7\\ 斜橢圖\Gamma_2:x^2-xy+y^2=5} \Rightarrow \cases{L_1與\Gamma_2有兩個交點 \\ L_2與\Gamma_1 有兩個交點\\ \Gamma_1與\Gamma_2有四個交點 \\ L_1與L_2有1個交點(0,0)} \Rightarrow 共9個交點,故選\bbox[red, 2pt]{(D)}
解答:x^2-2x+1+4y^2+8y+4=11+5 \Rightarrow (x-1)^2+4(y+1)^2=16 \Rightarrow {(x-1)^2\over 16} +{(y+1)^2\over 4 }=1 \\ \Rightarrow \cases{a=4\\b =2} \Rightarrow {2b^2\over a} ={8\over 4}=2,故選\bbox[red, 2pt]{(A)}
解答:
解答:\cases{x^3-y^3=(x-y)(x^2+xy+y^2) =7(x-y) \\ x^3+y^3=(x+y)(x^2-xy+y^2) =5(x+y)} \Rightarrow \cases{(x-y)(x^2+xy+y^2-7)=0\\ (x+y)(x^2-xy+y^2-5)=0} \\ 由於\cases{直線L_1:x=y\\ 直線L_2: x=-y\\ 斜橢圓\Gamma_1:x^2+xy+y^2=7\\ 斜橢圖\Gamma_2:x^2-xy+y^2=5} \Rightarrow \cases{L_1與\Gamma_2有兩個交點 \\ L_2與\Gamma_1 有兩個交點\\ \Gamma_1與\Gamma_2有四個交點 \\ L_1與L_2有1個交點(0,0)} \Rightarrow 共9個交點,故選\bbox[red, 2pt]{(D)}
解答:x^2-2x+1+4y^2+8y+4=11+5 \Rightarrow (x-1)^2+4(y+1)^2=16 \Rightarrow {(x-1)^2\over 16} +{(y+1)^2\over 4 }=1 \\ \Rightarrow \cases{a=4\\b =2} \Rightarrow {2b^2\over a} ={8\over 4}=2,故選\bbox[red, 2pt]{(A)}
解答:
假設正方形邊長為2\Rightarrow \cases{\overline{BE} =\overline{EC}=1\\ \overline{DF} =\overline{FC}=1 } \Rightarrow \cases{\overline{AE}=\overline{AF} =\sqrt 5\\ \overline{EF} =\sqrt 2} \Rightarrow \cos \angle EAF ={5+5-2\over 2\cdot 5} ={4\over 5} \\ \Rightarrow \sin \angle EAF={3\over 5},故選\bbox[red, 2pt]{(B)}
解答:x^2+ax+b=0的二實根為\alpha,\beta \Rightarrow \cases{\alpha+\beta=-a\\ \alpha\beta=b} \Rightarrow \alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta =a^2-2b\ge 9 \\ \Rightarrow (a,b)=(4-6,1),(4-6,2) ,(4-6,3),(5-6,4), (5-6,5),(5-6,6),共有15個\\ \Rightarrow 機率={15\over 36} ={5\over 12},故選\bbox[red, 2pt]{(B)}
解答:\cases{E(1.5X)=1.5E(X) =1.5\times 57=85.5\\Var(1.5X)=1.5^2Var(X)=2.25Var(X)} ,故選\bbox[red, 2pt]{(C)}
解答:檢定統計量={\bar x-\mu\over \sigma/\sqrt n}={73.3-70\over 9/\sqrt{81}} =3.3,故選\bbox[red, 2pt]{(D)}
解題僅供參考,其他教甄試題及詳解
解答:x^2+ax+b=0的二實根為\alpha,\beta \Rightarrow \cases{\alpha+\beta=-a\\ \alpha\beta=b} \Rightarrow \alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta =a^2-2b\ge 9 \\ \Rightarrow (a,b)=(4-6,1),(4-6,2) ,(4-6,3),(5-6,4), (5-6,5),(5-6,6),共有15個\\ \Rightarrow 機率={15\over 36} ={5\over 12},故選\bbox[red, 2pt]{(B)}
解答:\cases{E(1.5X)=1.5E(X) =1.5\times 57=85.5\\Var(1.5X)=1.5^2Var(X)=2.25Var(X)} ,故選\bbox[red, 2pt]{(C)}
解答:檢定統計量={\bar x-\mu\over \sigma/\sqrt n}={73.3-70\over 9/\sqrt{81}} =3.3,故選\bbox[red, 2pt]{(D)}
解題僅供參考,其他教甄試題及詳解
老師好,請問能詢問今年114新北資優數學嗎?謝謝!
回覆刪除題目在哪?
刪除https://career.ntpc.edu.tw/module/newtea/module/newtea/out-home/out-announce
回覆刪除在這個網站上,裡面試題,可能要找一下資優數學的科目,數學題從26題開始,謝謝老師
最近比較忙..... 題目太多....
刪除