Loading [MathJax]/extensions/TeX/HTML.js

2025年5月24日 星期六

114年新北國中教甄聯招-數學詳解

 新北市立國民中學 114 學年度教師聯合甄選數學科試題

選擇題: 共 40 題,總分 100 分。第 1~40 題,每題 2.5 分。

解答:{12/4=312×3/4=9{Q1=(a3+a4)/2=(3.2+3.4)/2=3.3Q3=(a9+a10)/2=(3.8+3.8)/2=3.8IQR=Q3Q1=3.83.3=0.5(A)
解答:S=a1+a2++a10=a(1+r++r9)=a1r101r=411/10241/2=8102310248(D)
解答:{A(1,3)B(2,7)C(5,3)aABC=12131271531=12|24|=12(B)
解答:(A),(D){(A)ˉx=(1+2+4+5+6)/5=3.6|xˉx|2=2.62+1.62+0.42+1.42+2.42(D)ˉx=(1+4+6+8+9)/5=5.6|xˉx|2=4.62+1.62+0.42+2.42+3.42(D)(D)
解答:419×533=238×533=25×1033=32×103335(B)
解答:x+2x3<2x+2x32<0x+8x3<0(x3)(x+8)<0(x3)(x8)>0x>8x<3(A)
解答:2{=(5/9)(4/8)=5/18=(4/9)(3/8)=1/6518+16=49(D)
解答:64+32397+563=64+276897+22352=(48+16)(49+48)=43+4743=3(A)
解答:(A):a,b,c3(a+b+c)3(a+b+c)29(B)×{a=15b=12c=21a+b+c=489(C)×{a=15b=12c=42a+b+c=692(D)×{a=15b=12c=42a2+b2+c2=213318(A)
解答:

a,(82)1808=135a+22a+22a=2a=21+2=2(21)(D)
解答:12+14++112=110+12+6+4+3+224=110+2724=110+1+1811018(D)
解答::5=3+1+13+2,C63C41C21+C63C42=160+120=280(B)
解答:y=f(x)=3x+2x13x+2=xyyx(y3)=y+2x=y+2y3(A)
解答:{x3|x5|=1{x5x5=1x=63x55x=1x=4x3|1x|=1{x11x=1x=01x3x1=1x=2x=0,2,4,6(D)
解答:log2(x+3)+log2(x4)=log2[(x+3)(x4)]=3(x+3)(x4)=23=8x2x20=0(x5)(x+4)=0x=5(x=4,x4>0)(C)
解答:{x+1=2x33x2=2x>3{x=3x=4/3x>3(A)
解答:sin330×tan(585)+cos930×tan420=sin30×tan45+(cos30)×tan60=12×(1)32×3=1232=1(B)
解答:(B)×:rank(A)=nA1det(A)0(C)×:det(A)=det(At)(D)×:AA1=Idet(AA1)=det(A)det(A1)=1det(A1)=1/det(A)(A)
解答:f(x)=ax2+bx+c{f(x+1)f(x)=2ax+a+bf(x+2)f(x+1)=2ax+3a+bf(x+3)f(x+2)=2ax+5a+b{f(2024)f(2023)=42=2=2a2023+a+bf(2025)f(2024)=74=3=2a2023+3a+bf(2026)f(2025)=f(2026)7=2a2023+5a+b{a=1/2b=4043/2f(2026)=7+2023+5240432=11(C)
解答:{x=5{3x+1=36=72922x1=29=512x=6{3x+1=37=218722x1=211=2048x=7{3x+1=38=656122x1=213=8192x=8x=6(B)
解答:g(x2)1=f(x)21(A)
解答:P=(x+y=7)(2xy=5)=(4,3)L4x+3y=10L:3x4y=k,Q(1,2)k=5d((4,3),3x4y+5=0)=55=1(A)
解答:{a=2b+cb=2c+d2c=d+a+1d=ac{b=2c+d2c=d+2b+c+1d=2b+cc{b=2c+dc=d+2b+1d=2bb=2(d+2b+1)+2bb=2(2b+2b+1)+2b=8b+2+2b9b=2b=29(D)
解答:2log(a2b)=loga+logblog(a2b)2=logab(a2b)2=aba25ab+4b2=0(a4b)(ab)=0a=4b(a>2bab0)aba+b=4bb4b+b=35(C)
解答:{x=10a+dy=10b+dz=100c+10c+cz=xy100c+10c+c=100ab+10(ad+bd)+d2cc=1,4,9{111=3×37444=12×37999=27×37{(a,b,c,d)=(2,3,9,7)(a,b,c,d)=(3,2,9,7)a+b+c+d=21(A)
解答:{a+1/b=1b+1/c=2c+1/a=5c=51a=5a1ab=21c=2a5a1=9a25a1a+5a19a2=181a254a+9=09(3a1)2=0a=13c=2b=32abc=13322=1abc=1(C)
解答:ab=8a2b+ab2+a+b=ab(a+b)+(a+b)=(ab+1)(a+b)=9(a+b)=81a+b=9(a+b)2=a2+b2+2ab=81a2+b2=8128=65(C)
解答:


ABCDa{aABG=a(a+4)/2aADE=a(a4)/2aEFG=8aAEG=a2+42a(a+4)2a(a4)28=a2+16a28=8(C)
解答:ab=8888×555=8(111)×5(111)=40×(111)2=10×(222)29ab=10×(666)2=(666)2=900:{62=36=9=9×1662=4356=18=9×26662=443556=27=9×3n6662=9n100666=9×100=900(B)
解答:\cos^2 80^\circ+ \cos^2160^\circ+ \cos80^\circ \cos160^\circ = \cos 80^\circ (\cos 80^\circ+ \cos 160^\circ) + \cos^2160^\circ \\= 2\cos 80^\circ \cos 120^\circ \cos 40^\circ + \cos^2 20^\circ = -\cos 80^\circ  \cos 40^\circ + \cos^2 20^\circ \\=-{1\over 2}(\cos 120^\circ+ \cos 40^\circ) +{1\over 2}(\cos 40^\circ +1) ={1\over 4}-{1\over 2}\cos 40^\circ+{1\over 2}\cos 40^\circ+{1\over 2}={3\over 4},故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}單選題第8題相同
解答:\cases{A_n(1/n,0) \\B_n(0,1/(n+1))} \Rightarrow S_n={1\over 2}\cdot {1\over n}\cdot {1\over n+1}={1\over 2}\left({1\over n}-{1\over n+1} \right) \\ \Rightarrow S_1+S_2+\cdots+S_{2025} ={1\over 2} \left({1\over 1}-{1\over 2}+ {1\over 2}-{1\over 3}+ \cdots +{1\over 2025}-{1\over 2026} \right) ={1\over 2} \left(1-{1\over 2026} \right) \\={2025\over 4052},故選\bbox[red, 2pt]{(B)}
解答:\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdots \tan 89^\circ \\=[\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 44^\circ] \cdot \tan 45^\circ \cdot [\tan(90^\circ-44^\circ)\cdot \tan(90^\circ-43^\circ) \cdots \tan (90^\circ-1^\circ)] \\=[\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 44^\circ] \cdot \tan 45^\circ \cdot [\cot 44^\circ\cdot \cot 43^\circ \cdots \cot  1^\circ] \\= [\tan 1^\circ \cot 1^\circ] [\tan 2^\circ \cot 2^\circ] \cdots[\tan 44^\circ \cot 44^\circ] \tan 45^\circ 1\cdot 1\cdots 1=1 \\ \Rightarrow \log(\tan 1^\circ) +\log(\tan 2^\circ)+ \cdots+\log(\tan 89^\circ) =\log (\tan 1^\circ \cdot \tan 2^\circ \cdots \tan 89^\circ) \\=\log 1=0,故選\bbox[red, 2pt]{(B)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}單選題第6題相同
解答:(A)\times: f(x)=(ax+b)q(x)+r =a(x+{b\over a})q(x)+r \Rightarrow 商=a\cdot q(x) \\(B)\times: f(x)=(ax+b)q(x)+r   \Rightarrow xf(x)=x(ax+b)q(x)+rx =x(ax+b)q(x)+{r\over a}(ax+b)-{rb\over a} \\ \qquad \Rightarrow xf(x)=(ax+b)(xq(x)+{r\over a})-{br\over a} \Rightarrow \cases{商:xq(x)+r/a\\ 餘式:-br/a} \\(C) \bigcirc: 見(B)\\ (D)\times: x^2f(x)=x^2(ax+b)q(x)+rx^2 =x^2(ax+b)q(x)+({r\over a}x-{br\over a^2})(ax+b)+{b^2r\over a^2} \\ \qquad \Rightarrow x^2f(x)=(ax+b)(x^2q(x)+{r\over a}x-{br\over a^2}) +{b^2r\over a^2} \Rightarrow \cases{商:x^2q(x)+rx/a-{br/a^2}\\餘:b^2r/a^2} \\,故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://chu246.blogspot.com/2025/05/114_16.html}{114年香山高中教甄}多選題第3題相同
解答:
假設\cases{\overline{EG} \bot \overline{AB}且\overline{EG}=h \\ a\triangle DEF=x} \Rightarrow \cases{a\triangle AFE= \overline{AF} \cdot h/2\\ a\triangle BFD = \overline{BF}\cdot h/2\\ a\triangle DEF=\overline{DE}\cdot h/2} \Rightarrow \triangle AFE: \triangle BFD:\triangle DEF=\overline{AF}:\overline{BF} :\overline{DE} \\ \Rightarrow {15\over \overline{AF}} ={9\over \overline{BF}} ={x\over \overline{DE}}  \Rightarrow {x\over \overline{DE}} ={15+9\over \overline{AF}+ \overline{BF}} ={24\over \overline{AB}} \Rightarrow {\overline{DE} \over \overline{AB}} ={x\over 24}\\ 又\overline{DE} \parallel \overline{AB} \Rightarrow {\triangle CDE \over \triangle ABC}={32\over x+56} ={\overline{DE}^2 \over \overline{AB}^2} ={x^2\over 24^2} \Rightarrow x^3+56x^2=18432 \\\Rightarrow x^2(x+56)=16^2\cdot (16+56) \Rightarrow x=16 \Rightarrow  {\triangle DEF \over \triangle ABC}={x\over x+56}={16\over 72} ={2\over 9},故選\bbox[red, 2pt]{(C)}\\ 此題與\href{https://www.sec.ntnu.edu.tw/uploads/asset/data/625640a6381784d09345bc2f/07-99058-%E4%B8%AD%E5%AD%B8%E7%94%9F%E9%80%9A%E8%A8%8A%E8%A7%A3%E9%A1%8C%E7%AC%AC75%E6%9C%9F%E9%A1%8C%E7%9B%AE%E5%8F%83%E8%80%83%E8%A7%A3%E7%AD%94%E5%8F%8A%E8%A9%95%E8%A8%BB(%E6%9C%88%E5%88%8A).pdf}{科學教育月刊第332期問題編號《7503》}相同
解答:\cases{x^3-y^3=(x-y)(x^2+xy+y^2) =7(x-y) \\ x^3+y^3=(x+y)(x^2-xy+y^2) =5(x+y)} \Rightarrow \cases{(x-y)(x^2+xy+y^2-7)=0\\ (x+y)(x^2-xy+y^2-5)=0} \\ 由於\cases{直線L_1:x=y\\ 直線L_2: x=-y\\ 斜橢圓\Gamma_1:x^2+xy+y^2=7\\ 斜橢圖\Gamma_2:x^2-xy+y^2=5} \Rightarrow \cases{L_1與\Gamma_2有兩個交點 \\ L_2與\Gamma_1 有兩個交點\\ \Gamma_1與\Gamma_2有四個交點 \\ L_1與L_2有1個交點(0,0)} \Rightarrow 共9個交點,故選\bbox[red, 2pt]{(D)}
解答:x^2-2x+1+4y^2+8y+4=11+5 \Rightarrow (x-1)^2+4(y+1)^2=16 \Rightarrow {(x-1)^2\over 16} +{(y+1)^2\over 4 }=1 \\ \Rightarrow \cases{a=4\\b =2} \Rightarrow {2b^2\over a} ={8\over 4}=2,故選\bbox[red, 2pt]{(A)}
解答:

假設正方形邊長為2\Rightarrow \cases{\overline{BE} =\overline{EC}=1\\ \overline{DF} =\overline{FC}=1 } \Rightarrow \cases{\overline{AE}=\overline{AF} =\sqrt 5\\ \overline{EF} =\sqrt 2} \Rightarrow \cos \angle EAF ={5+5-2\over 2\cdot 5} ={4\over 5} \\ \Rightarrow \sin \angle EAF={3\over 5},故選\bbox[red, 2pt]{(B)}
解答:x^2+ax+b=0的二實根為\alpha,\beta \Rightarrow \cases{\alpha+\beta=-a\\ \alpha\beta=b} \Rightarrow \alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta =a^2-2b\ge 9 \\ \Rightarrow (a,b)=(4-6,1),(4-6,2) ,(4-6,3),(5-6,4), (5-6,5),(5-6,6),共有15個\\ \Rightarrow 機率={15\over 36} ={5\over 12},故選\bbox[red, 2pt]{(B)}
解答:\cases{E(1.5X)=1.5E(X) =1.5\times 57=85.5\\Var(1.5X)=1.5^2Var(X)=2.25Var(X)} ,故選\bbox[red, 2pt]{(C)}
解答:檢定統計量={\bar x-\mu\over \sigma/\sqrt n}={73.3-70\over 9/\sqrt{81}} =3.3,故選\bbox[red, 2pt]{(D)}



====================== END ==========================
解題僅供參考,其他教甄試題及詳解


4 則留言:

  1. 老師好,請問能詢問今年114新北資優數學嗎?謝謝!

    回覆刪除
  2. https://career.ntpc.edu.tw/module/newtea/module/newtea/out-home/out-announce

    在這個網站上,裡面試題,可能要找一下資優數學的科目,數學題從26題開始,謝謝老師

    回覆刪除