國立政治大學114學年度碩士班招生考試
考試科目:微積分
系所別:科技管理與智慧財產研究所
解答:(1) ∫sin(4x)cos(3x)dx=12∫(sin(4x+3x)+sin(4x−3x))dx=12∫(sin(7x)+sin(x))dx=−12(17cos(7x)+cosx)+C=−114cos(7x)−12sinx+C(2) limx→0sin(a+4x)−2sin(a+2x)+sinax2=limx→0(sin(a+4x)−2sin(a+2x)+sina)′(x2)′=limx→04cos(a+4x)−4cos(a+2x)2x=limx→0(4cos(a+4x)−4cos(a+2x))′(2x)′=limx→0−16sin(a+4x)+8sin(a+2x)2=−4sina解答:{u=cos−1xdv=dx⇒{du=−1√1−x2dxv=x⇒∫cos−1xdx=xcos−1x+∫10x√1−x2dx=xcos−1x−√1−x2+C⇒∫10cos−1xdx=[xcos−1x−√1−x2]|10=1
解答:ex=1+x+x22+x36+x424+⋯⇒ex2=1+x2+x42+x66+x824+⋯f(x)=∫x0et2−1t2dt⇒f′(x)=ex2−1x2=1+x22+x46+x624+⋯⇒f″(x)=x+23x3+14x5+⋯⇒f‴(x)=1+2x2+54x4+⋯⇒f‴(0)=1
解答:y4e2x+dydx=0⇒∫1y4dy=−∫e2xdx⇒−13y3=−12e2x+c1⇒1y3=32e2x+c2⇒y=3√132e2x+c2
解答:f(x)=4+∫x21sec(t−1)dt⇒{f(−1)=4f′(x)=2xsec(x2−1)⇒切線斜率f′(−1)=−2⇒切線方程式:y=−2(x+1)+4⇒2x+y=2
解答:(1) ∫f(x)dx=1⇒∫10c(1−x)dx=12c=1⇒c=2(2) FY(y)=f(Y≤y)=f(X2≤y)=f(X≤√y)=∫√y02(1−x)dx=2√y−y⇒fY(y)=ddy(2√y−y)⇒fY(y)=1√y−1(3) 四千元=0.04十萬元⇒P(y≤0.04)=2√0.04−0.04=0.4−0.04=0.36
解答:{x=rcosθy=rsinθ⇒(r2)2=a2(r2cos2θ−r2sin2θ)⇒r2=a2cos(2θ)⇒14面積=12∫π/40a2cos(2θ)dθ=14a2⇒面積=a2
解答:ddxtan−1x=11+x2⇒ddxtan−1e2x=2e2x1+e4x⇒∫2e2x+e−2xdx=∫2e2xe4x+1dx=tan−1e2x+C
解答:總花費100x+200y≤80000⇒x+2y≤800⇒{f(x,y)=200x3/4y1/4g(x,y)=x+2y−800Lagrange算子: {fx=λgxfy=λgyg=0⇒{150x−1/4y1/4=λ50x3/4y−3/4=2λx+2y=800⇒150x−1/4y1/450x3/4y−3/4=λ2λ⇒3yx=12⇒x=6y⇒6y+2y=8y=800⇒y=100⇒x=600⇒f(600,100)=200⋅6003/4⋅1001/4=200⋅63/4⋅1003/4⋅1001/4=20000⋅63/4
解答:∫√π/20∫√π/2x∫51sin(y2)dzdydx=∫√π/20∫√π/2x4sin(y2)dydx=∫√π/20∫y04sin(y2)dxdy=∫√π/204ysin(y2)dy=∫π/202sinudu=2 ====================== END ==========================
解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言