Loading [MathJax]/jax/output/CommonHTML/jax.js

2025年5月15日 星期四

114年永春高中教甄-數學詳解

 臺北市立永春高中 114 學年度第 1 次正式教師甄選

一、填充題:每題 7 分,共 70 分


解答:S1:{1133,S2:{242,S3:{224{P(S1S1)=1236+1236=12P(S1S2)=1212=14P(S1S3)=1212=14,{P(S2S1)=46=23P(S2S2)=26=13,{P(S3S1)=46=23P(S3S3)=26=13A=[1/22/32/31/41/301/401/3],Ax=x[1/22/32/31/41/301/401/3][x1x2x3]=[x1x2x3]{x1=4/7x2=3/14x3=3/14P(S1)=x1=47
解答:INSTITUTIONALIZED 17{I×4T×3N×281{4:131:C21C101×4=8022:C32×4!2!2!=1822:C31C102×4!2!=16204:C114×4!=79201+80+18+1620+7920=9639
解答:(x2+x+1+2x2+x+5)2=(x23x+13)23x2+2x+6+2(x2+x+1)(2x2+x+5)=x23x+132(x2+x+1)(2x2+x+5)=2x25x+74(x2+x+1)(2x2+x+5)=(2x25x+7)24(2x4+3x3+8x2+6x+5)=(4x4+25x2+49+2(10x335x14x2))8x4+12x3+32x2+24x+20=4x4+20x33x270x+494x48x3+35x2+94x29=0(2x2+3x1)(2x27x+29)=0x=3±174,7±183i4(,):x23x+13=a(x2+x+1)+b(2x2+x+5){a+2b=1a+b=3a+5b=13{a=7b=4x2+x+1+2x2+x+5=7(x2+x+1)+4(2x2+x+5)A+B=7A+4BA+B+2AB=7A+4B2AB=8A+3B4AB=64A248AB+9B264A252AB+9B2=0(16A9B)(4AB)=0{16A=9B4A=B{2x27x+29=02x2+3x1=0x=3±174
解答:x=rcosθ=(1+cosθ)cosθ=cos2+cosθ=(cosθ+12)214:14

解答:P(X)=1n=1(a2n+b3n)=a1/211/2+b1/311/3=a+12b=1(1)f(x)=11x=n=0xnf(x)=1(1x)2=n=1nxn1g(x)=xf(x)=x(1x)2=n=1nxnEX=n=1(na2n+nb3n)=ag(12)+bg(13)=a2+b34=158(2)(1)(2)(a,b)=(34,12)
解答:

¯AP=d(y=3x,y=3x+2)=210¯OA=¯AB=21023=430Ay=3xA(a,3a)¯OA2=10a2=1630a=253A(253,653)Q=A60=[1/23/23/21/2][253653]=[39153+15]Q=(3915,3+15)


解答:

¯BCQ使¯BQ=6ABC=PBQ¯AB¯BC=¯BP¯BQ=46ABCPBQ¯PQ=5{ABP=CBQ¯PB¯BA=¯BQ¯BC=1kPBAQBC¯QC=12cosBQP=52+6242256=34sinBQP=74PQC5,12,13PQC=90cosAPB=cosBQC=cos(BQP+90)=sinBQP=74

解答:A=[7878]det(AλI)=λ215λ=0λ=0,15f(λ)=(1+λ)n=(λ215λ)p(λ)+aλ+b{f(0)=1=bf(15)=16n=15a+b{a=(16n1)/15b=1f(A)=(1+A)n=aA+bI=115(16n1)A+Ian=115(16n1)
解答:an=1(n+n+1)(n+1+n+2)(n+n+2)=1n+2n(1(n+n+1)(n+n+2)1(n+n+2)(n+1+n+2))=1(n+2n)(n+n+2)(1n+n+11n+1+n+2)=12(1n+n+11n+1+n+2)k=1ak=12(11+212+3+12+313+4+)=1211+2=212

解答:

f(x)=ln(x+1)f(x)=1x+1f(1)=12:2L:y=2(x1)+ln(2)x=1+12(ln2y)LyB(0,2+ln2)R=R1R2,{R1y=2+ln2ln2(1+12(ln2y))2πdy=23πR2y=ln20(ey1)2πdy=π(ln212)23π+π(ln212)=π(16+ln2)

二、計算證明題:每題 10 分,共 30 分

解答:{¯BC=a¯AC=b¯AB=c,O{AOAB=BOBA=c2/2AOAC=COCA=b2/2BOBC=COCB=a2/2AOBC=3BOAC+4COBAAO(BA+AC)=3BO(AB+BC)+4CO(BC+CA)c2+b2=3(c2+a2)+4(a2+b2)a2+2c2=3b2cosB=a2+c2b22ac=a2+c2(a2+2c2)/32ac=(2/3)a2+(1/3)c22ac2(2/9)a2c22ac=2323
解答:西:(ni=1|xiˉx|2)(12+12++12)(ni=1|xiˉx|)21nnk=1|xiˉx|21n2(ni=1|xiˉx|)21nni=1(x2i2ˉxxi+(ˉx)2)=1nni=1x2i2n2(ni=1xi)2+1n2(ni=1xi)21nni=1|xiˉx|1nni=1x2i1n2(ni=1xi)2=1nni=1x2i(ˉx)21nni=1|xiˉx|QED.

解答:{A(0,0,0)B(a,a,0)C(a,0,a)D(0,a,a){P=(A+C)/2=(a/2,0,a/2)Q=(B+C)/2=(a,a/2,a/2)R=(B+D)/2=(a/2,a,a/2){PQ=(a/2,a/2,0)PR=(0,a,0)n=PQ×PR=(0,0,a2/2)(0,0,1){E=PQR:z=a2AD:(0,t,t),tRS=(0,a/2,a/2){¯PQ=¯QR=¯RS=¯PS=a/2PQPS=(a/2,a/2,0)(a/2,a/2,0)=0PQRSQED.


====================== END ==========================
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言