Processing math: 100%

2025年5月12日 星期一

114年全國高中教甄聯招-數學詳解

 教育部受託辦理114學年度
公立高級中等學校教師甄選

第一部分:選擇題( 共40分)
一、單選題( 每題2分, 共22分)

解答:{a1+a2++a10=60a2+a4++a10=40{a11r101r=60(1)a1r1r101r2=40(2)(1)(2)=1+rr=32r=2a1(2101)=60a1=6010230.059(A)
解答:={1:(1,1,1,1)=18:{(1,1,2,4)=12(1,2,2,2)=427:(1,3,3,3)=464:{(1,4,4,4)=4(2,2,4,4)=6125:(1,5,5,5)=4216:{(1,6,6,6)=4(2,3,6,6)=12(3,3,4,6)=1263=6364XGeo(p=6364)E(X)=1p=6463=144720.57(C)
解答:f(x)=cos(2x)3sin(2x)=2(sinπ6cos(2x)+cosπ6sin(2x))=2sin(2x+π6)f(x+5π6)=2sin(2x+π)=2sin(2x)g(x)=2sin(2x)|x|y=g(x)x{Γ1:y=2sin(2x)Γ2:y=|x|(0,0)π2<2<3π4,(π4,π2)(B)


解答:22+2=C122/C512×14C122/C512×14+C132/C512×34=11/85011/850+39/850=1150(B)
解答:f(x)=x(x2+1)(x3+x+2)f(x)=6x5+8x3+6x2+2x+2f(x)=30x4+24x2+12x+2>0f(x),{f(x)5f(0)=2,f(x)=0,k,f(k)=0a0f(x)=0a=0,a=m<k(kmf(x)dx=0kf(x)dx)a(B)
解答:f(x)=(x+15x)n4096=f(1)=2nn=12f(x)=(x+15x)12=12k=0C12kx12kxk/5=12k=0C12kx126k/51265kk=0,5,10{31010(10!)113C1133!10!×C1133!13!=1526(D)
解答:|x3+y41145|=160|20x+15y1368|x,yZ20x+15y520x+15y13682,3,8220x+15y1368=220x+15y=13704x+3y=274{x=1y=90|x3+y41145|=1602=130(C)
解答:rref([123142311131211])=[100101020013]{x=1y=2z=3[110α011β101γ]{x+y=αy+z=βx+z=γ{α=3β=5γ=4(B)
解答:an=23+1231×33+1331×43+1431××n3+1n31=3317×47213×513321××(n+1)(n2n+1)(n1)(n2+n+1)=3(n+1)!/2(n1)!(n2+n+1)=32(n+1)nn2+n+1limnan=32(C)
解答:an=3an12(1)n1an+k(1)n=3(an1+k(1)n1)an=3an1+3k(1)n1k(1)n2(1)n1=3k(1)n1k(1)n=4k(1)n1k=12an12(1)n=3(an112(1)n1)bn=an12(1)nbn=3bn1,b1=1bn=3n1b114=3113=a11412(1)114a114=3113+12log(3113)=113log3=1130.4771=53.9123a11354(A)

解答:

(A)

二、複選題(每題3分,共18分, 全對才給分)

解答:(A):1>tanAtanB>0{tanA>0tanB>0tanC=tan(π(A+B))=tan(A+B)=tanA+tanB1tanAtanB<0C(B):sinA+cosA=2(sinAcos45+sin45cosA)=2sin(45+A)=14sin(A+45)=142A+45>135A>90A(C):{CcosC=cos(A+B)>0AsinC=sin(A+B)<0ABC(D)×:A,{sinA=5/6sinB=4/5cosA=11/6cosB=3/5{cosC=cos(A+B)>0sinC=sin(A+B)>0(ABC)

解答:(A):limx0f(x)=L<limx0(f(x)+|x|x)=L+limx0|x|x(B)×:f(x)=xlimx0(f(x)|x|x)=limx0|x|=0,limx0f(x)=0(C):limx0(f(x)|x|x)=L<limx0(f(x)|x|x)2=L2limx0((f(x))2|x|2x2)=limx0(f(x))2=L2(D)×:f(x)={0x<0x+1x>0,limx0f(x),limx0(f(x)[x]x)=0(AC)


解答:{3333=3+310+3102++31098=13(10991)6666=6+610++61098=23(10991)993333×996666=29(10991)2=2×99111×99999=2×99111×(1990001)=992229900099222=982221977778(A)×:n=99×2=198(B)(C)×:2(D)(BD)
解答:y=x3+ax2+ay=3x2+2axP(x0,y0)=(x0,x30+ax20+a)=3x20+2ax0O(0,0)¯OP=x30+ax20+ax0=3x20+2ax02x30+ax20a=0,f(x)=2x3+ax2af(x)=6x2+2ax=02x(3x+a)=0x=0,a/3f(0)f(a/3)<0(a)(a39a)<0(a2)(a291)<0a291>0a>3,a<3{(A):π3.14>3(B):2025=45>3(C)×:log114<log1000=3(D):2025114>342114=3(ABD)
解答:(A):an5bn5,cn(B)×:a30=c45c1c4530an,15bn,{b15=515logb15=15(10.301)=10.485a30=230loga30=30×0.301=9.03a30<b15(C)×:b10=c30c1c3010bn,20an,{b10=510logb10=6.99a20=220loga20=6.02a21=221loga21=6.321a22=222loga22=6.622a23=223loga23=6.923b10an23b10cn30,c33(D):{ck=a20=220ck+h=a30=230{c1ckk20bnc1ck+hk+h30bn{log5k20<log220log5k+h30<log230{k20<8.612k+h30<12.918h10<4.30h<14.30h=14()(AD)

解答:

(A):OBBAOB(B)×:AOBAA:xy=6OBAA=(4,2)=(A+A)/2A=(6,0)(C)×:AOCA=(25,45)BC=AA:x+7y=6(D):O=OBOC=(3,1)r=d(O,BC)=2:(x3)2+(y+1)2=2x2+y26x+2y+8=0(AD)

第二部分: 綜合題( 共60分)
一、 填充題(每題4分,共36分)

解答:En(b×c)=(10,5,5)anu=(4,1,3)(2,1,1)(2,1,1)(2)2+12+12=23(2,1,1)=(43,23,23)xb+yc=au(2x+3y,3x+7y,xy)=(83,53,113)(x,y)=(4115,1415)

解答:ABCBCD=31¯CD¯AD=12tanAtanC=¯BD/¯AD¯BD/¯CD=12{tanA=ktanC=2ktanB=tan(A+C)=3k2k212tanA+1tanB+3tanC=2k+2k213k+32k=4k2+196k=2k3+196k22k3×196k=2319
解答:f(k)=coskπ11f(k)={01k516k16017k211k=2211k=1f(k)=10114=225+4k=1f(k)=105+0=50
解答:logn+1an=loganlog(n+1)=1+1(n+1)log(n+1)=(n+1)log(n+1)+1(n+1)log(n+1)logan=(n+1)log(n+1)+1(n+1)=log(n+1)+1n+1=log((n+1)101/n+1)an=(n+1)101/n+1ann+1=101/n+1<1.21n+1<log1.20.079112.6n=12
解答:
4×2π12(cos0+cos2π12+cos4π12)=2π3(1+32+12)=π3(3+3)
解答:{OA×OB=OCOA×OC=OD{OAOCOAODOCODOBOC{A(k,0,0)C(0,k,0)D(0,0,m)B(a,0,b)OA×OC=(0,0,k2)=(0,0,m)m=k2OA×OB=(k,0,0)×(a,0,b)=(0,bk,0)=(0,k,0)b=1¯BD=a2+(bm)2=a2+b22bm+m2=k2+2m+m2=k2+2k2+k4=kk2+3
解答:(5+6+7)(6+75)(5+76)(5+67)=((6+7)+5)((6+7)5)(5+(76))(5(76))=((6+7)25)(5(76)2)=(8+242)(8+242)=(242)282=16864=104
解答::C51C42=301055563C63:2!2!=43:330×C63×4×3=7200

解答:114k=1(k!×k)=114k=1((k+1)!k!)=(2!1!)+(3!2!)+(115!114!)=115!1115!2025,(115!1)2025=20251=2024

二、計算題(每題8分,共24分)

解答:



{u=AB=AB/|AB|v=AD=AD/|AD|w=AC=3AC/|AC|{u+v=3w|u|=|v|=1|w|=3cosADC=|v|2+|u|2(3|w|)22|u||v|=1+132=12ADC=120DAC=CAB=30{AC=AB30×s=s[cos30sin30sin30cos30][523]=s(323,112)AD=AB60×t=t[cos60sin60sin60cos60][523]=t(12,723)CD=ADAC(7,33)=(12t323s,723t112s){s=43/3t=2{AC=(6,223/3)AD=(1,73){|AB|=37|AC|=4111/3|AD|=237ABCD=ABC+ACD=12sin30(|AB||AC|+|AD||AC|)=373
解答:limx11x1(1x1001x100)=limx11x1((1x)(1+x+x2++x99)1x100)=limx11x1(1+x+x2++x99100)=limx1(x+x2++x9999)(x1)=limx1(99x98+98x97++2x+1)=99+98++1=50×99=4950
y=cosx+2sinx2+cosx2y=(1y)cosx+2sinx=(1y)2+22(1y(1y)2+22cosx+2(1y)2+22sinx)=y22y+5sin(x+θ)sin(x+θ)=2yy22y+5|2yy22y+5|14y2y22y+53y2+2y50(3y+5)(y1)053y1{153



====================== END ==========================
解題僅供參考,其他教甄試題及詳解




沒有留言:

張貼留言