Loading [MathJax]/jax/output/HTML-CSS/jax.js

2021年2月16日 星期二

107年中正預校教甄-數學詳解

 中正國防幹部預備學校107年教師甄選測驗試題

第壹部分:單選題


解答
x10+x8+x6+x4+x2+1=0(x21)(x10+x8+x6+x4+x2+1)=0x12=112x21=0x=±1=82=8×1211sin30+2×1211sin60=2+32(2)
解答34x1=24x+16x3/41334x=24x+24x3=24x+1824x=9824x827=(23)4x3=4x34=baa+b=7(4)
解答z=x+yix,yR|z2i|+|z+4i|=x2+(y2)2+x2+(y+4)210x2+(y2)2+x2+(y+4)2=10{2a=102c=2(4)=6{a=5c=3b=4=abπ=20π(5)
解答
20C203=1140,(1):20,OPQ(2):,16;¯IJ,I,JK,H,16;20×16=320;114020320=800,(4)
解答{ab+a+b=524bc+b+c=146cd+c+d=104{ab+a+b+1=525bc+b+c+1=147cd+c+d+1=105{(a+1)(b+1)=525(1)(b+1)(c+1)=147(2)(c+1)(d+1)=105(3){(1)&(2)b+1525147(2)&(3)c+1147105{b+1gcd(525,147)c+1gcd(147,105){b+121c+121{b+1=3,7,21c+1=3,7,21(b+1)(c+1)=147(b+1,c+1)=(7,21)(21,7){(a+1,b+1,c+1,d+1)=(75,7,21,5)(a+1,b+1,c+1,d+1)=(25,21,7,15){(a,b,c,d)=(74,6,20,4)(a,b,c,d)=(24,20,6,14){ad=70ad=10(2)
解答(x+(y+z))2018+(x(y+z))2018=2018k=0C2018k(xk(y+z)2018k+xk(1)2018k(y+z)2018k)=21009k=0C20182kx2k(y+z)20182k(y+z)20182k20182k+11009k=0(20182k+1)=1009k=0(20192k)=2019×10102×1010×10092=10102=2020100,(1)
解答
    第2個圓與第1個圓最多有2個交點;
    第3個圓與其它2個圓最多有4個交點;
    第4個圓與其它3個圓最多有6個交點;
    第5個圓與其它4個圓最多有8個交點;
    因此五個不同的圓最多有2+4+6+8=20個交點,故選(5)

解答:;1256711123489101314110:7711n=7的卡特蘭數(Catalan number)C(n=7)=1n+1C2nn=18C147=429(3)

解答
a¯BCD¯OD¯AB¯OD¯AB=¯CO¯CAa12=3a6aa=63a=18(2)

解答A={1,2,3,,60}=A0A1A6Ai={7k+i07k+i60,kN}{n(A0)=n(A5)=n(A6)=8n(A1)=n(A2)=n(A3)=n(A4)=9A1A6A1A6,A2A5,A3A4n(S)S=A1A2A3n(S)=3×9=27A0n(S)=28(5)
解答:cos(3θ)=4cos3θ3cosθf(x)=x33x+1=(x2cosα)(x2cosβ)(x2cosγ){f(2cosα)=8cos3α6cosα+1=0f(2cosβ)=8cos3β6cosβ+1=0f(2cosγ)=8cos3γ6cosγ+1=0{2cos(3α)=12cos(3β)=12cos(3γ)=1{cos(3α)=1/2cos(3β)=1/2cos(3γ)=1/2{3α=120,240,4803β=120,240,4803γ=120,240,480{α=40,80,160β=40,80,160γ=40,80,160α<β<γ{α=40β=80γ=160sin(γα)=sin(16040)=sin(120)=32
解答


¯ABD使¯BC=¯BD=aBCDD=θABC=2θACB=180422θ=1382θb2c2=acb2=c(a+c)bc=a+cb¯AC¯AB=¯AD¯ACABCACDACB=D1382θ=θθ=138÷3=46
解答N2+7N+4=N4+23N+4N+423;1N20185N+42022N+4=23,46,69,...,23×87=200187
解答|a+bb+cc+ax+yy+zz+x343|c2+c1,c3+c1|2(a+b+c)b+cc+a2(x+y+z)y+zz+x1043|=2|a+b+cb+cc+ax+y+zy+zz+x543|c1+c2,c1+c32|a+b+cabx+y+zxy512|c2+c1,c3+c12|cabzxy212|=2|cabzxy212|;|cabzxy212|c2+a2+b2×z2+x2+y2×22+12+22=1×4×9=6|a+bb+cc+ax+yy+zz+x343|2×6=12:{u=(u1,u2,u2)v=(v1,v2,v3)w=(w1,w2,w3)V=|u1u2u3v1v2v3w1w2w3|V?u,v,w,,V=|u||v||w|=u21+u22+u23×v21+v22+v23×w21+w22+w23
解答{O(0,0,0)A(a,0,0)B(0,b,0)C(0,0,c)ABC=12|AB|2|AC|2(ABAC)2=12|(a,b,0)|2|(a,0,c)|2((a,b,0)(a,0,c))2=12(a2+b2)(a2+c2)a4=12a2c2+a2b2+b2c2=4a2c2+a2b2+b2c2=64;k=|OA×OB|+2|OB×OC|+2|OC×OA|=|(0,0,ab)|+2|(bc,0,0)|+2|(0,ac,0)|=ab+2bc+2ca西:((ab)2+(bc)2+(ca)2)(12+22+22)(ab+2bc+2ca)2=k264×9k224k=24
解答{a1=1=tan(45)a2=33=tan(30),{θ1=45θ2=30an+2=an+an+11anan+1an+2=tanθn+2=tan(θn+1+θn)=tanθn+tanθn+11tanθntanθn+1;tanθ180,n123456789101112131415θn4530751050105105301351651201054515015n1617181920212223242526θn1650165165150135105601654530242018=24×84+2a2018=a2=33
解答|z+33i|=|z(3+3i)|=2O1(3,3)r1=2|iw1|=|i(w1i)|=|i||w+i|=1|w+i|=1O2(0,1)r2=1|zw|¯O1O2+r1+r2=9+16+2+1=8
解答

{y=f(x)=sinx3cosxy=k0xπf(x)=sinx3cosx=10sin(xθ)f(x)1010;f(x)=cosx+3sinxf(x)=0tanx=13tan56π<tanx<tanπf(π)k<f3k<10


解答{z1=cosπ3+isinπ3=eπ3iz1=cosπ4+isinπ4=eπ4i{z3=z1z2=e(13+14)πi=e112πi=cos112π+isin112πz4=z1z2=e(1314)πi=e712πi=cos712π+isin712πz3=cos112πisin112π|az3|+|az4|=|z3z4|=(cos7π12cosπ12)2+(sin7π12+sinπ12)2=22(cos7π12cosπ12sin7π12sinπ12)=22cos(7π12+π12)=22cos2π3=2+1=3
解答(32)6(3+2)6(3+2)6+(32)6(3+2)6+(32)6=((3+2)2)3+((32)2)3=(5+26)3+(526)3=10(49+2061+49206)=970(3+2)6970
{x+y=5(1)x2+z2+xz=16(2)y2+z2yz=9(3),(1)x=5y(2)(5y)2+z2+(5y)z=16y2+z2yz+910y+5z=0(4);(3)(4)9+910y+5z=0y=18+5z10(3)(18+5z10)2+z2(18+5z10)z=934z2=14425z=±835xz+yz=z(x+y)=±835×5=±83: 學校公布的答案是83
解答xn=xn1xn2+xn3xn4x5=x4x3+x2x1x6=x5x4+x3x2=(x4x3+x2x1)x4+x3x2=x1x7=x2,x8=x3,,x11=x6=x1,x12=x2,,x15=x5,x16=x110x31+x53+x1975=x1+x3+x5=21+42+(2342+3721)=60
解答
{|z|=1z28z81=0z,z28z8,1;z8=e23πi,e43πi,; z=eθi{z8=e8θiz28=e28θi,{(8θ,28θ)=(120+360×k,60+360×t),k,t=0,1,2,(8θ,28θ)=(240+360×k,300+360×t),k,t=0,1,2,8θ12048084012001560192022802640θ156010515019524028533028θ4201680294042005460672079809240(60)(240)(60)(240)(60)(240)(60)(240):θ=15,105,195,285;8θ24060096013201680204024002760θ307512016521025530034528θ8402100336046205880714084009660(120)(300)(120)(300)(120)(300)(120)(300):θ=75,165,255,345;,15,75,105,165,195,255,285,345,75+165+255+345=840
解答x,y,z14,1516=12x14=12y15=12z16x:y:z=4:5:6{x=4ky=5kz=6ks=(x+y+z)÷2=152k=s(sx)(sy)(sz)=12x14152k72k52k32k=12kk=4307x+y+z=15k=154307=27=mnm+n=9

現在來解釋一下,為什麼可以這樣假設。以上圖為例:x=¯BC=¯BD+¯DC=y2116+z2116x=y2116+z2116


解答


{f(x)=log107xg(x)=107xf(x)=g1(x)y=f(x)y=g(x)y=x{y=xy=x+3P(3/2,3/2)f(α)+g(β)2=32f(α)+g(β)=3
解答a=3352+33+52a3=3+3aa6=(3+3a)2=9a2+18a+9a69a218a4=94=5
解答{an=a,a+d,a+2d,bn=b,b+e,b+2e,:{ab=1440(a+d)(b+e)=1716(a+2d)(b+2e)=1848{ab=1440(1)ab+ae+bd+de=1716(2)ab+2(ae+bd)+4de=1848(3)(1)(2)(3){ae+bd+de=276(4)ae+bd+2de=204(5)(5)(4)de=72(4)ae+bd=348a8×bb=(a+7d)(b+7e)=ab+7(ae+bd)+49de=1440+7×348+49×(72)=348
解答100010000n=31n24=100010000n=314(1n21n+2)=25010000n=3(1n21n+2)=250[(11+12++19998)(15+16++110002)]=250(11+12+13+1419999110000110001110002)250(251212500)520.80.1=520.7521a+b+c=5+2+1=8
解答
=OABOCD=20360(802602)π=ODEOFG=20360(602402)π=20360(8022×602+402)π=4009π


解答


¯AE=¯ADAEC=ADE=θDAE=1802θC=(180(30+1802θ))÷2=θ15AED=C+EDCθ=x+θ15x=15











1 則留言:

  1. 您好:請問第13題答案是不是怪怪的,因為我代答案幾乎都是最簡分數喔,謝謝

    回覆刪除