Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

2022年1月29日 星期六

PDE utt = c^2uxx 詳細求解過程

 求一維波動方程式 one-dimentional wave equation 之解,即2t2u=c22x2u滿{u(0,t)=0u(L,t)=0,t{u(x,0)=f(x)ut|t=0=g(x)

解答u(x,t)=F(x)G(t){utt=FGuxx=FGFG=c2FGGc2G=FFGc2GtFFxkGc2G=FF=k:{u(0,t)=F(0)G(t)=0u(L,t)=F(L)G(t)=0G(t)=0u(x,t)=0F(0)=F(L)=0FkF=0F=c1ekx+c2ekx{F(0)=c1+c2=0(1)F(L)=c1ekL+c2ekL=0(2)(1)c2=c1(2)c1(ekLekL)=0c1=0ekLekLc1=0c2=0F=0;ekLekLekLekL,k>0;k=0F=0k<0,F(x)=c1(ei|k|xei|k|x)=2ic1sin(|k|x)F(L)=2ic1sin(|k|L)=0|k|L=nπ,nN|k|=nπ/LF(x)=2ic1sin(nπx/L)=Asin(nπLx),Ak=n2π2L2G+n2π2L2c2G=0G(t)=c3cos(nπLct)+c4sin(nπLct)u(x,t)=Asin(nπLx)(c3cos(nπLct)+c4sin(nπLct))=n=1sin(nπLx)(Ancos(nπLct)+Bnsin(nπLct))

1:u(x,0)=f(x)f(x)=n=1Ansin(nπLx)L0f(x)sin(kπLx)dx=n=1L0Ansin(kπLx)sin(nπLx)dx=L0Aksin2(kπLx)dx=L2AkAk=2LL0f(x)sin(kπLx)dxAn=2LL0f(x)sin(nπLx)dx2:ut|t=0=g(x)g(x)=n=1(cnπLAnsin(cnπLt)+cnπLBncos(cnπLt))sin(nπLx)|t=0=n=1cnπLBnsin(nπLx)sin(kπLx)g(t)=n=1cnπLBnsin(kπLx)sin(nπLx)L0sin(kπLx)g(x)dx=n=1L0cnπLBnsin(kπLx)sin(nπLx)dx=ckπLBkL0sin2(kπLx)dx=ckπLBkL2=ckπ2BkBk=2ckπL0sin(kπLx)g(x)dxBn=2cnπL0sin(nπLx)g(x)dxu(x,t)=n=1(Ancos(cnπLt)+Bnsin(cnπLt))sin(nπLx)An=2LL0f(x)sin(nπLx)dx,Bn=2cnπL0sin(nπLx)g(x)dx


沒有留言:

張貼留言