Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2022年7月7日 星期四

111年台中市國中聯合教甄-數學詳解

111 學年度臺中市政府教育局受託辦理本市立國民中學

(含本市立高級中等學校附設國中部)教師甄選

選擇題(共 50 題,每題 2分,共 100 分)

解答f(x)=xsin(x)+ex{f(2h)=2hsin(2h)+e2hf(0)=1f(2h)=2hsin(2h)+e2hlimh0f(2h)2f(0)+f(2h)h2=limh04hsin(2h)+e2h+e2h2h2=limh04sin(2h)+8hcos(2h)+2e2h2e2h2h by l'Hospital rule=limh016cos(2h)16hsin(2h)+4e2h+4e2h2 by l'Hospital rule=242=12(D)
解答x2+3xy+y2+xy=10x2x+3y+3xy+2yy+1y=0y=2x+3y+13x+2y1|(1,2)=3232(1,2):y=32(x1)+2y=32x+72(B)
解答f(x)=ddx(cosx11+t4dt)=1+(cosx)4(sinx)f(π4)=1+14(22)=52(22)=104(C)
解答k=1(x+1)kk2kan=(x+1)nn2nr=limn|an+1an|=limn|x+12nn+1|<1|x+12|<12<x+1<23<x<1[3,1)(x=3){a=3b=1a+4b=3+4=1(C)
解答LA(2,1,3)(1,3,2)(E:x3y+2z=4)L:x21=y13=z32;PLP(t+2,3t+1,2t+3),tRd(P,E)=|t+2+9t3+4t+641+9+4|=14t+114t=114P(2714,1714,207)EP=(A+Q)/2QAQ=2PA=(137,107,197)=(α,β,γ)β+γ=297(B)
解答A=[0112]=[1110][1101][0111]=PDP1An=P[1n01]P1A111=P[111101]P1=[11101111][0111]=[110111111112]=[abcd]a+c+d=110+111+112=113(D)
解答2,4,6,855434×5×5×4×3=1200(A)
解答10n2>9nlog10n2>log9nn2>2nlog3=2n×0.47710.0458n>2n>43.67n=44(C)

解答{a=32+3b=323x=abx3=(ab)3=(a3b3)3ab(ab)=2331xx3+3x=23x3+3x+1=23+1(A)
解答x=1i3i=(3+1)(31)i4=12(6+24624i)=12(cos(15)isin(15))x10=132(cos(150)isin(150))=132(3212i)64x10=3i(A)
解答(A):661(mod13)661111(mod13)66111113(B)×:29995111837(mod13){88(mod13)8212(mod13)835(mod13)841(mod13)858(mod13)48378(mod13)2999+513(C)×:6833333331111(mod13)2999+113(D):1850=(182)25(131)25(mod13)1850+113(C)
解答p(x)=1+x+x2+x3+x4,(1+x+x2+x3+x4)(x+x2++x10)2=p(x)(xp(x)+x6p(x))2=p(x)(x6+x)2p(x)2=p3(x)(x2+2x7+x12){p3(x)x3=10p3(x)x8=15x10=2×10+15=35(C):p(x)=1,1,1,1,1p2(x)1,2,3,4,5,4,3,2,1p3(x)1,3,6,10,15,18,19,18,15,10,6,3,1
解答logx+2logy=1logxy2=1xy2=103x+2y226xy2=603x+2y2260=4153x+2y2415(C)
解答3±5=6=9cosθcosθ=2312sin2θ2=23sin2θ2=16sinθ2=66(A)
解答{1+2xx2+x33+x+x2+2x31+x2x2+2x302x+x2+2x3A=[1211311211220212 ]rref(A)=[1003010300140000]Rank(A)=3(C)
解答{3x+3yz=104xy3z=2mnx4y2z=m2[331413n42][xyz]=[102mm2]Ax=bdet([341413n42])=01010n=0n=1{3x+3yz=10(1)4xy3z=2m(2)x4y2z=m2(3){3×(3)(1)15y5z=3m164×(3)(2)15y5z=2m83m16=2m8m=8mn=81=7(D)
解答
|(z1)(z+12)|=|z1||z+12|=¯PAׯPB,{PA(1,0)B(1/2,0){cosPOA=cosθ=¯OA2+¯OP2¯PA22¯OA¯OP=2¯PA22¯PA2=22cosθcosPOB=cosθ=¯OB2+¯OP2¯PB22¯OB¯OP=54¯PB2¯PB2=cosθ+54α2=f(θ)=¯PA2ׯPB2=(22cosθ)(cosθ+54)=2cos2θ12cosθ+52α2=f(18)=264+116+52=8132(B)
解答limx0sinxxx=limx0cosx11=111=0(C)
解答f(x)=cos(sin(x))f(x)=sin(sin(x))cos(x)f(0)=0(B)

解答y=x2y=2x|(1,1)=2L2L:y=2(x1)+1y=2x1x(12,0)x=12(D)
解答f(x,y)=x2+y2{fx=2xfy=2yf(x,y)=(2x,2y)f(1,1)=(2,2)(C)
解答u=x2du=2xdxπ0xcosx2dx=π012cosudu=[12sinu]|π0=0(B)
解答limn1nnk=0(kn)4=10x4dx=15(D)
解答42(l'Hospital rule):limsπsπcos3xdxsπ=limsπcos3s1=1(D)
解答xk=1+1k2>1f(xk)=1(D)
解答14+(14)2+(14)3+=1/411/4=13(C)
解答(D)(D)
解答sinx=xx33!+x55!x77!+(B)
解答y=k=0xkk!y=k=1xk1(k1)!=k=0xkk!=yy=y(B)
解答y=k=0kxkk!y=k=1k2xk1k!y
解答(2\times 3)(m\times n)(5\times 8) \Rightarrow \cases{m=3\\ n=5},故選\bbox[red, 2pt]{(C)}
解答\begin{vmatrix} 3 & 4\\ 6 & 8\end{vmatrix} =3\cdot 8-6\cdot 4=0,其他選項行列式皆不為0,故選\bbox[red, 2pt]{(C)}
解答AX=0 \Rightarrow \cases{x+y+z =0\\ x+2y +3z=0} ,兩平面相交為一直線,故選\bbox[red, 2pt]{(B)}
解答A=\begin{bmatrix} 1 & 1\\ 1& -1\end{bmatrix} /\sqrt 2=\begin{bmatrix} 1/\sqrt 2 & 1/\sqrt 2\\ 1/\sqrt 2 & -1/\sqrt 2\end{bmatrix} =\begin{bmatrix} \cos 45^\circ & \sin 45^\circ \\ \sin 45^\circ & -\cos 45^\circ\end{bmatrix} 為直線鏡射矩陣,故選\bbox[red, 2pt]{(C)}
解答A=\left[\begin{matrix}1 & 1 & 2\\1 & 3 & 4\\1 & 1 & 2\end{matrix}\right] \Rightarrow rref(A)=\left[\begin{matrix}1 & 0 & 1\\0 & 1 & 1\\0 & 0 & 0\end{matrix}\right] \Rightarrow \text{Rank}(A)=2 \Rightarrow \text{Null}(A)=1,故選\bbox[red, 2pt]{(D)}
解答2\times 3=6,故選\bbox[red, 2pt]{(D)}
解答取\cases{u=x^2 \Rightarrow du=2xdx\\ dv = \cos x\,dx \Rightarrow v=\sin x} \Rightarrow \int x^2\cos x\,dx = x^2\sin x-2\int x\sin x\,dx\\ 再取\cases{u=x \Rightarrow du=dx\\ dv=\sin x\,dx \Rightarrow v=-\cos x},則 \int x^2\cos x\,dx = x^2\sin x-2(-x\cos x+\sin x) \\ \Rightarrow \int_0^\pi x^2\cos x\,dx = \left. \left[ x^2\sin x+2x\cos x-2\sin x\right]\right|_0^\pi =-2\pi,故選\bbox[red, 2pt]{(D)}
解答E(X+1)=E(X)+1=3 \Rightarrow E(X)=2;\\E[(X+1)^2] =E(X^2+2X+1) =E(X^2)+2E(X)+1 = E(X^2)+4+1=20\Rightarrow E(X^2)=15\\ Var(2X-1)= E[(2X-1)^2]-(E(2X-1))^2 =E(4X^2-4X+1)-(2E(X)-1)^2 \\ =4E(X^2)-4E(X)+1-(2\cdot 2-1)^2=60-8+1-9=44,故選\bbox[red, 2pt]{(C)}
解答取\cases{u=f(x) \Rightarrow du=f'(x)dx\\ dv = \sin x dx \Rightarrow v= -\cos x} \Rightarrow \int f(x)\sin x\,dx = -\cos xf(x)+ \int f'(x)\cos x\,dx\\ 再取\cases{u= f'(x) \Rightarrow df=f''(x)dx\\ dv= \cos x\,dx \Rightarrow v=\sin x} \Rightarrow \int f'(x)\cos x\,dx=f'(x)\sin x-\int f''(x)\sin x\,dx\\ 因此\int f(x)\sin x\,dx = -\cos xf(x)+ f'(x)\sin x-\int f''(x)\sin x\,dx\\ 原式\int_0^\pi (f''(x)+f(x))\sin x\,dx = \left.\left[ -\cos xf(x)+ f'(x)\sin x\right] \right|_0^\pi =f(\pi)-{1\over 2}=0 \Rightarrow f(\pi)={1\over 2}\\,故選\bbox[red, 2pt]{(B)}
解答點數和為5的情況:(1,4),(4,1),(2,3),(3,2),共四種情況,機率p={4\over 36} ={1\over 9}\\ 因此P(X=1)=p, P(X=2)=(1-p)p,..,P(X=n)=(1-p)^{n-1}p,n\in \mathbb{N}\\\Rightarrow X\sim \text{Geometric}(p) \Rightarrow 期望值E(X)= {1\over p} \Rightarrow E(5X-1)= 5E(X)-1={5\over p}-1 =45-1=44\\,故選\bbox[red, 2pt]{(D)}
解答f(x)=\cos^2 2x+ 4\cos^2x-4 \Rightarrow f'(x)= -4\cos 2x\sin 2x-8\cos x\sin x =-4\cos 2x\sin 2x-4\sin 2x\\ =-4\sin 2x(\cos 2x+1) =0 \Rightarrow \cases{\sin 2x=0 \Rightarrow x=k\pi/2, k\in \mathbb{Z}\\ \cos 2x=-1 \Rightarrow x=(2k-1)\pi/2, k\in \mathbb{Z}} \\ \Rightarrow \cos 2x=-1 且\cos^2x =0 ,則f(x)有最小值\Rightarrow f(\pi/2)=1+0-4=-3,故選\bbox[red, 2pt]{(B)}
解答\lim_{x\to 0} x^{-3}\int_0^{2x} {t^2\over 1+t^3}\,dt =\lim_{x\to 0} \cfrac{\int_0^{2x} {t^2\over 1+t^3}\,dt }{x^3}  =\lim_{x\to 0} \cfrac{  {4x^2\over 1+8x^3}\cdot 2 }{3x^2}= \lim_{x\to 0} \cfrac  {8x^2}{3x^2+24x^5} \\= \lim_{x\to 0} \cfrac  {16x}{6x+ 120x^4} = \lim_{x\to 0} \cfrac  {16}{6+ 480x^3} ={16\over 6}={8\over 3},故選\bbox[red, 2pt]{(D)}
解答x+{1\over x}=2\cos \theta \Rightarrow (x+{1\over x})^2 =x^2+{1\over x^2}+2 =4\cos^2\theta \Rightarrow x^2+{1\over x^2}=4\cos^2\theta -2\\ \Rightarrow x^3+{1\over x^3} =(x+{1\over x})(x^2-1+{1\over x^2}) =2\cos \theta(4\cos^2\theta -3)= 2(4\cos^3\theta-3\cos\theta) =2\cos 3\theta\\,故選\bbox[red, 2pt]{(A)}
解答{a+b\over 4}=\cfrac{{a\over 3} +{a\over 3} +{a\over 3} +b}{4} \ge \sqrt[4]{a^3b\over 27} \Rightarrow 1\ge \sqrt[4] {a^3b\over 27} \Rightarrow a^3b\le 27 \Rightarrow \log a^3b \le \log 27\\ \Rightarrow 3\log a+\log b\le 3\log 3,故選\bbox[red, 2pt]{(D)}
解答\cfrac{3^8 +3^6+3^4 +3^2+1}{3^4 +3^3+3^2 +3 +1} =\cfrac{1-3^{10}\over 1-3^2}{1-3^5\over 1-3} ={3^{10}-1\over 8}\cdot {2\over 3^{5}-1} ={3^5+1\over 4} =61,故選\bbox[red, 2pt]{(B)}
解答假設x=p為其共同根 \Rightarrow \cases{x^2+ kx+1 = (x-p)(x-q)\\ x^2+x+k = (x-p)(x-r)},兩式相除\Rightarrow {x^2+ kx+1 \over x^2+x+k} ={x-q\over x-r}\\ \Rightarrow x^3+(k-r)x^2+(1-kr)x-r = x^3+(1-q)x^2+(k-q)x-kq\\ \Rightarrow \cases{k-r= 1-q \cdots(1)\\ 1-kr= k-q\cdots(2)\\ r=kq \cdots(3)},將(3)代入(1)及(2) \Rightarrow \cases{k-kq=1-q \Rightarrow q=1 \cdots(4)\\ 1-k^2q= k-q \cdots(5)}\\將(4)代入(5) \Rightarrow 1-k^2 =k-1 \Rightarrow k^2+k-2=0 \Rightarrow (k+2)(k-1)=0 \\ \Rightarrow k=1,-2 \Rightarrow 1-2=-1,故選\bbox[red, 2pt]{(A)}
解答\begin{array} {cc|cc|c} |ab| & |a+b| & a & b & 小計\\\hline 0 & 5 & 0 & 5 \\ & & 0 & -5\\ & & 5 & 0\\ & & -5 & 0 & 4\\\hdashline 1 & 4 & & & 0\\\hdashline 2 & 3 & 1& 2& \\ & & 2 & 1\\ & & -1 & -2\\ & & -2 & -1 & 4\\\hdashline 3 & 2 & 3& -1& \\ & & -1 & 3 \\ & & -3 & 1\\ & & 1& -3& 4\\\hdashline 4 & 1 & & &0 \\ 5 & 0 & & & 0\\\hline\end{array}\\ \Rightarrow 共12組答案,故選\bbox[red, 2pt]{(D)}
解答d=32 \Rightarrow 最小的\sum a_i = 32\times 50=1600 \gt 1504 \Rightarrow d\ne 32\\ d=16 \Rightarrow 最小的\sum a_i = 16\times 50=800 \lt 1504,又(1504-800)\div 16=44 \\ \Rightarrow a_1=a_2=\cdots = a_6=16,a_7=a_8=\cdots =a_{50}=32 滿足 16\mid a_i,i=1-50\\ 因此最大的d=16,故選\bbox[red, 2pt]{(C)}
解答


\cases{y^2-4x^2\le 0 \Rightarrow (y+2x)(y-2x) \le 0\\|x|\le 2 \Rightarrow -2\le x\le 2}為兩條斜直線與兩條垂直線所圍區域,見上圖;\\因此兩面積之和=8\times 2=16,故選\bbox[red, 2pt]{(B)}
解答

斜線區域面積=正方形扣除右上角的\triangle BPC=1-{1\over 2}(2-a)^2 = -{a^2\over 2}+2a-1,故選\bbox[red, 2pt]{(C)}
================= END ==================
解題僅供參考,教甄歷屆試題及詳解


1 則留言: