臺灣綜合大學系統108學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D37
解答:先求齊次解:y″−4y′+4y=0⇒λ2−4λ+4=0⇒(λ−2)2=0⇒λ=2⇒yh=C1e2x+C2xe2x;令{y1=e2xy2=xe2xr(x)=(12x2−6x)e2x⇒{y′1=2e2xy′2=e2x+2xe2x⇒W=|y1y2y′1y′2|=|e2xxe2x2e2xe2x+2xe2x|=e4x⇒yp=−y1∫y2r(x)Wdx+y2∫y1r(x)Wdx=−e2x∫12x3−6x2dx+xe2x∫12x2−6xdx=−e2x(3x4−2x3)+xe2x(4x3−3x2)=e2x(x4−x3)⇒y=yh+yp=C1e2x+C2xe2x+e2x(x4−x3)⇒y′=(2C1+C2)e2x+2C2xe2x+e2x(2x4+2x3−3x2)將{y(0)=1y′(0)=0代入⇒{1=C10=2C1+C2⇒C2=−2⇒y=e2x−2xe2x+e2x(x4−x3)⇒y=e2x(x4−x3−2x+1)
解答:{L{x″}=s2X(s)−sx(0)−x′(0)=s2X(s)−sL{x′}=sX(s)−x(0)=sX(s)−1L{y″}=s2Y(s)−sy(0)−y′(0)=s2Y(s)+s−5L{y′}=sY(s)−y(0)=sY(s)+1⇒{L{x″+x′+y′}=0L{y″+y′−4x′}=0⇒{(s+1)X(s)+Y(s)=s⋯(1)(s+1)Y(s)−4X(s)=−1⋯(2)由(1)⇒Y(s)=s−(s+1)X(s)代入(2)⇒X(s)=s(s+1)+1(s+1)2+4⇒Y(s)=3s−1(s+1)2+4⇒{x(t)=L−1{X(s)}y(t)=L−1{Y(s)}⇒{x(t)=δ(t)−e−tcos(2t)−32e−tsin(2t)y(t)=3e−tcos(2t)−2e−tsin(2t)
解答:假設X=PDP−1,其中D=[λ100λ2]⇒X2=PD2P−1⇒X2−5X+6I=P(D2−5D+6I)P−1=[−4−5810]=[−54−1211][0006][−43−234353]⇒{λ21−5λ1+6=0λ22−5λ2+6=6⇒{λ1=2,3λ2=0,5⇒X=[−54−1211][λ100λ2][−43−234353]⇒X=[10353−83−43],[0−5247],[552−4−2],[53−5383193]

解答:取{x(t)=2costy(t)=2sintz(t)=1⇒{x′(t)=−2sinty′(t)=2costz′(t)=0⇒左式=∮C→F⋅d→r=∫2π0(10sint,−10cost,3)⋅(−2sint,2cost,0)dt=∫2π0−20sin2t−20cos2tdt=∫2π0−20dt=−40π→F=(5y,−5x,3)⇒curl →F=(∂∂x,∂∂y,∂∂z)×(5y,−5x,3)=(0,0,−10)→r=(x,y,1)⇒{→rx=(1,0,0)→ry=(0,1,0)⇒→rx×→ry=(0,0,1)因此右式:∬
=================== END ============================
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言