臺灣綜合大學系統108學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D39

解答:(a)令X=[abcd]⇒[1324]X+2[21−13]=[1324][abcd]+2[21−13]=[a+3cb+3d2a+4c2b+4d]+[42−26]=[a+3c+4b+3d+22a+4c−22b+4d+6]=[152−1]⇒{{a+3c=−32a+4c=4⇒{a=12c=−5{b+3d=32b+4d=−7⇒{b=−33/2d=13/2⇒X=[12−33/2−513/2](b)(A∣I3)=(1−231002−330103−42001)−2r1+r2→r2−3r1+r3→r3→(1−2310001−3−21002−7−301)2r2+r1→r1−2r2+r3→r3→(10−3−32001−3−21000−11−21)−3r3+r1→r1−3r3+r2→r2→(100−68−3010−57−300−11−21)−r3→(100−68−3010−57−3001−12−1)⇒A−1=(−68−3−57−3−12−1)X=A−1AX=(−68−3−57−3−12−1)(−121)=(19164)⇒X=(19164)det(5A)=53det(A)=125×|1−232−333−4−2|=125×(−1)=−125⇒det(5A)=−125
解答:(a)x3y′+2y=x3+2x⇒y′+2x3y=1+2x2,取積分因子I(x)=e∫2x3dx=e−1/x2⇒e−1x2y′+2x3e−1x2y=e−1x2+2x2e−1x2⇒(e−1x2y)′=e−1x2+2x2e−1x2⇒e−1x2y=∫e−1x2+2x2e−1x2dx=xe−1x2+C⇒y=x+Ce1x2將y(1)=e+1代入上式⇒e+1=1+Ce⇒C=1⇒y=x+e1x2 (b)令y=xv(x)⇒y′=v(x)+xv′(x)⇒y″ \mathbf{(c)}\;先求齊次解,即y''-3y'+2y=0 \Rightarrow \lambda^2-3\lambda+2=0 \Rightarrow \lambda=1,2 \Rightarrow y_h=C_1e^x +C_2e^{2x}\\ 再用參數變換法:令\cases{y_1=e^x\\ y_2=e^{2x}} \Rightarrow W=\begin{vmatrix} y_1& y_2\\ y_1' & y_2'\end{vmatrix} =\begin{vmatrix} e^x & e^{2x}\\ e^x & 2e^{2x}\end{vmatrix} =e^{3x} \\ \Rightarrow y_p =-y_1\int {y_2 \sin(e^{-x}) \over W} \,dx+ y_2 \int{y_1 \sin(e^{-x})\over W}\,dx =-e^x \int {\sin(e^{-x})\over e^x}\,dx + e^{2x}\int {\sin(e^{-x})\over e^{2x}}\,dx \\ =-e^x \cos(e^{-x})+e^{2x}\left( e^{-x}\cos(e^{-x})-\sin(e^{-x})\right) = -e^{2x} \sin(e^{-x})\\ \Rightarrow y=y_h+y_p \Rightarrow \bbox[red,2pt]{y=C_1e^x +C_2e^{2x}-e^{2x}\sin(e^{-x})}
解答:\mathcal L^{-1}\{{s-2\over s^2+2s +10} \}=\mathcal L^{-1}\{ {(s+1)-3\over (s+1)^2+ 9}\} =\mathcal L^{-1}\{ {s+1\over (s+1)^2+3^2}\} -\mathcal L^{-1}\{ {3\over (s+1)^2+3^2}\} \\= \bbox[red, 2pt]{e^{-t}\cos(3t)-e^{-t}\sin(3t)}
解答:\mathcal F(f(x))= {1\over \sqrt{2\pi}} \int_{-\infty}^\infty f(x)e^{-i\omega x}\,dx\\= {1\over \sqrt{2\pi}} \int_{-\infty}^\infty e^{-x^2/a^2}e^{-i\omega x}\,dx ={1\over \sqrt{2\pi}} \int_{-\infty}^\infty e^{-x^2/a^2}(\cos(\omega x)-i\sin (\omega x))\,dx \\={1\over \sqrt{2\pi}} \int_{-\infty}^\infty e^{-x^2/a^2}\cos(\omega x)\,dx \;(\because f(x)\sin(\omega x)為奇函數,其積分值為0)\\ ={2\over \sqrt{2\pi}} \int_{0}^\infty e^{-x^2/a^2}\cos(\omega x)\,dx =\sqrt{2\over \pi}\int_{0}^\infty e^{-x^2/a^2}\cos(\omega x)\,dx \;(\because f(x)\cos(\omega x)對稱y軸)\\ 取g(\omega)= \int_0^\infty e^{-x^2/a^2}\cos(\omega x)\,dx,其中\omega\ge 0; \Rightarrow g'(\omega)= \int_0^\infty -x e^{-x^2/a^2} \sin(\omega x) \,dx\\ 由\cases{u=\sin(\omega x) \Rightarrow du =\omega \cos (\omega x)\,dx\\ dv=-xe^{-x^2/a^2}\,dx \Rightarrow v= {a^2\over 2}e^{-x^2/a^2}} \\\Rightarrow g'(\omega) = \left.{a^2\over 2}e^{-x^2/a^2}\sin (\omega x) \right|_0^\infty -{\omega a^2\over 2 } \int_{0}^\infty\cos(\omega x)e^{-x^2/a^2}\,dx =0 -{\omega a^2\over 2 }g(\omega) \\ \Rightarrow g'(\omega)=-{\omega a^2\over 2 }g(\omega) \Rightarrow \left(e^{a^2\omega^2/4} g(\omega)\right)'=0 \Rightarrow g(\omega) =C_1e^{-a^2\omega^2/4} \Rightarrow \mathcal F(f(x))= \sqrt{2\over \pi}g(\omega) \\ \Rightarrow \bbox[red, 2pt]{\mathcal F(f(x))=\sqrt{2\over \pi}C_1e^{-a^2\omega^2/4}}解答:\cases{A(1,1,1)\\ B(2,2,2)\\ C(3,4,X)} \Rightarrow \cases{\vec u =\overrightarrow{AB}=(1,1,1)\\ \vec v=\overrightarrow{AC} =(2,3,X-1)} \Rightarrow \vec u\times \vec v =(x-4,3-x,1) \\ \Rightarrow \triangle ABC面積={1\over 2} \lVert(x-4,3-x,1) \rVert={1\over 2}\sqrt{2x^2-14x+26} ={1\over 2}\sqrt{2(x-(7/2))^2+3/2} \\ \Rightarrow \triangle ABC面積最小值={1\over 2}\sqrt{3\over 2} =\bbox[red,2pt]{\sqrt 6\over 4}
========================== END ==============================
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言