臺灣綜合大學系統109學年度學士班轉學生聯合招生考試
科目名稱:工程數學
類組代碼:D39
解答:xf(x)=32x4−3x2+4+∫x2f(t)dt⇒f(x)+xf′(x)=6x3−6x+f(x)⇒xf′(x)=6x3−6x⇒f′(x)=6x2−6⇒f(x)=2x3−6x+C將f(x)=2x3−6x+C代回原式⇒2x4−6x2+Cx=32x4−3x2+4+∫x22t3−6t+Cdt=32x4−3x2+4+(12x4−3x2+Cx−8+12−2C)=2x4−6x2+Cx+8−2C⇒C=4⇒f(x)=2x3−6x+4

解答:y′+2xy=2xcos(x2),令積分因子I(x)=e∫2xdx=ex2⇒I(x)y′+2xyI(x)=2xI(x)cos(x2)⇒ex2y′+2xex2y=2xex2cos(x2)⇒(ex2y)′=2xex2cos(x2)⇒ex2y=∫2xex2cos(x2)dx=∫eucosudu(其中u=x2)=12eu(sinu+cosu)=12ex2(sinx2+cosx2)+C⇒y=12(sinx2+cosx2)+Ce−x2
解答:先求齊次解,即y″+y=0⇒特徵方程式為λ2+1=0⇒λ=±i⇒yh=C1cosx+C2sinx接著令yp=x(Acosx+Bsinx)⇒y′p=Acosx+Bsinx+x(−Asinx+Bcosx)⇒y″p=−2Asinx+2Bcosx+x(−Acosx−Bsinx)⇒y″p+yp=−2Asinx+2Bcosx=cosx⇒{A=0B=1/2⇒yp=12xsinx⇒y=yh+yp=C1cosx+C2sinx+12xsinx⇒y′=−C1sinx+C2cosx+12sinx+12xcosx因此{y(0)=1y′(0)=0⇒{C1=1C2=0⇒y=cosx+12xsinx
解答:L−1{s−2s2+2s+10}=L−1{s−2(s+1)2+32}=L−1{s+1(s+1)2+32−3(s+1)2+32}=e−tcos3t−e−tsin3t解答:L{sint+tcost}=L{sint}+L{tcost}=1s2+1+s2−1(s2+1)2=2s2(s2+1)2

解答:a0=12π∫π0xdx=π4an=1π∫π0xcos(nx)dx=1π[1nxsin(nx)+1n2cos(nx)]|π0=1n2π((−1)n−1)bn=1π∫π0xsin(nx)dx=1π[1n2sin(nx)−1nxcos(nx)]|π0=−1n(−1)n⇒f(x)=π4+∞∑n=1(1n2π((−1)n−1)cos(nx)−1n(−1)nsin(nx))
============================== END =================================
解題僅供參考,其他轉學考歷屆試題及詳解
沒有留言:
張貼留言