Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年10月11日 星期二

108年台綜大轉學考-微積分A詳解

臺灣綜合大學系統108學年度學士班轉學生聯合招生考試

科目名稱:微積分A



解答(a)limx3x2+x12x3=limx3(x3)(x+4)x3=limx3(x+4)=7(b)limx0x2secx1=limx0(x2)(secx1)=limx02xtanxsecx=limx02xcos2xsinx=limx02cos2x4xcosxsinxcosx=2
解答{fx(0,0)=limh0f(h,0)f(0,0)h=limh03h/2h=32fy(0,0)=limh0f(0,h)f(0,0)h=limh00h=0{fx|(0,0)=32fy|(0,0)=0
解答F(x)=2ax+21f(t)dtF(x)=2af(2ax+2)={2a,2ax+202a(12ax2)=2a(1+2ax),2ax>0F(2a)=02a(14a2)=0a=12
解答{A(0,2)B(1,0)Px2+y24=1P(cosθ,2sinθ){PA=(cosθ,22sinθ)PB=(1cosθ,2sinθ)PAB=12cosθ22sinθ1cosθ2sinθ=|cosθ+sinθ1|θ=π42+1
解答u=2exdu=2exdxln(1/2)ln(1/4)ex14e2xdx=11/21/21u2du=[12sin1u]|11/2=12(π2π6)=π6
解答2/201y2yex2+y2dxdy=π/4010rer2drdθ=π/40[12er2]|10dθ=12(e1)×π4=π8(e1)
解答f(x)=ln(1+2x12x)f(x)=414x2=4(1+4x2+(4x2)2+(4x2)3+)=4+42x2+43x4+44x6++4n+1x2n+=n=04n+1x2nf(x)=n=12n4n+1x2n1f(x)=f(0)+f(0)x+f(0)2!x2+=0+4x+163x3+645x5++4k2k1x2k1+f(x)=k=14k2k1x2k1
解答T(x,y)=1+x2y2T=(2x,2y)T(γ(t))=(2x(t),2y(t))=γ(t)=(x(t),y(t)){2x(t)=x(t)2y(t)=y(t){x(t)=C1e2ty(t)=C2e2tγ(0)=(x(0),y(0))=(1,4){x(0)=C1=1y(0)=C2=4γ(t)=(e2t,4e2t)
解答F(x,y,z)=x2y4+sin(2z)4{Fx=1/2Fy=1/4Fz=cos(2z)/2P(1,a,b):Fx(P)(x1)+Fy(P)(ya)+Fz(P)(zb)=012(x1)14(ya)+cos(2b)2(zb)=02(x1)(ya)+2cos(2b)(zb)=0(1){1u=(1/2,1,0)2v=(0,2,1)n=u×v=(1,1/2,1):(x1)12(ya)+(zb)=02(x1)(ya)+2(zb)=0(2)(1)=(2)cos(2b)=1b=0F(1,a,0)=012a4+0=0a=2(a,b)=(2,0)


解答{C1=ABCAloopC2=¯AD={(t,0)t=01}Green's Theorem:F=(P(x,y),Q(x,y))=(4x+5y,ecosy+7x)C1Fdr=(xQyP)dA=(75)dA=2dA=2×π4=π2C2Fdr=10(4t,17t)(1,0)dt=104tdt=2LFdr=π2+2


============================== END =================================
解題僅供參考,其他轉學考歷屆試題及詳解

沒有留言:

張貼留言