112學年度分科測驗試題數學甲考科
第 壹 部 分 、 選 擇 ( 填 ) 題 ( 占 76 分 )
一 、 單 選 題 ( 占 18 分 )
解答:$$\left({1\over 2}\right)^{112/T_B} ={1\over 4}\left({1\over 2}\right)^{112/T_A} =\left({1\over 2}\right)^{112/T_A+2} \Rightarrow {112\over T_B}={112\over T_A}+2,故選\bbox[red, 2pt]{(2)}$$
解答:$$\lim_{n\to \infty} {3\over n^2} \left(\sqrt{4n^2+9\times 1^2} + \sqrt{4n^2 +9\times 2^2} + \cdots +\sqrt{4n^2+9\times (n-1)^2} \right) \\ =\lim_{n\to \infty} {3\over n} \left(\sqrt{4+9\times ({1\over n})^2} + \sqrt{4 +9\times ({2 \over n})^2} + \cdots +\sqrt{4+9\times ({n-1\over n})^2} \right)\\=\lim_{n\to \infty} {3\over n} \left(\sqrt{4+ ({3\cdot 1\over n})^2} + \sqrt{4 + ({3\cdot 2 \over n})^2} + \cdots +\sqrt{4+ ({3\cdot (n-1)\over n})^2} \right) \\ = \int_0^3\sqrt{4+x^2}\,dx,故選\bbox[red, 2pt]{(3)}$$
二 、 多 選 題 ( 占 40 分 )
解答:$$(1)\bigcirc: |x-a|\le b \Rightarrow a-b\le x\le a+b \Rightarrow x\in [a-b,a+b]\\\qquad \cases{-1\le \sqrt{10}\le 4\\ -1,4\in [a-b,a+b] }\Rightarrow \sqrt{10}\in [a-b,a+b]\\ (2)\bigcirc: a-b\le x\le a+b \Rightarrow -a-b\le -x \le -a+b \Rightarrow -b\le a-x\le b \\\qquad \Rightarrow |a-x|\le b\Rightarrow |x'+a|\le b (x'=-x=3,1,-4,-7) \\(3)\times: a-b\le x\le a+b \Rightarrow a/2-b/2\le x/2\le a/2+b/2 \\ \qquad \Rightarrow |x/2-a/2|\le b/2 \Rightarrow |x'-a/2|\le b/2 \\(4)\times: b=4 \Rightarrow 區間[a-b,a+b]的長度=2b=8,而-3與7的間距=10,因此b\ne 4\\ (5)\times: a=b \Rightarrow a-b\le x\le a+b \Rightarrow 0\le x\le 2a,而-3與-1皆不符此條件\\ 故選\bbox[red, 2pt]{(12)}$$解答:$$(1)\bigcirc: 共軛複數同為根\\ (2)\times: x=1+2i \Rightarrow x^2-2x+5=0 \Rightarrow x^2-2x+5為f(x)的因式,利用長除法可得\\ \qquad f(x)=(x^2-2x+5)(x^2-2x-11) =x^4-4x^3-2x^2+12x-55\\ \qquad \Rightarrow a=12,b=-55\Rightarrow b不是正數 \\(3)\bigcirc: f(x)=(x^2-2x+5)(x^2-2x-11)=(x^2-2x)^2-6(x^2-2x)-55\\ \qquad \Rightarrow f'(x)=2(x^2-2x)(2x-2)-6(2x-2) = 4(x-1)(x^2-2x-3)\\ \qquad \Rightarrow f'(2.1)=4(2.1-1)(2.1(2.1-2)-3)=4\cdot 1.1\cdot (0.21-3)\lt 0\\ (4)\times: f''(x)=4(x^2-2x-3)+8(x-1)^2 \Rightarrow f''(1)\lt 0 \Rightarrow x=1有局部極大值\\ (5)\times: f''(x)= 12(x-1)^2-16=0 \Rightarrow x=1\pm {2\over \sqrt 3}(一正一負)\\故選\bbox[red, 2pt]{(13)}$$
解答:$$(1)\bigcirc: \vec u\cdot \vec v=0 \Rightarrow \vec u\bot \vec v \Rightarrow \vec u \not \parallel \vec v \Rightarrow {a\over c}\ne {b\over d} \Rightarrow ad\ne bc \Rightarrow \begin{vmatrix} a & b\\ c& d \end{vmatrix}=ad-bc\ne 0\\ (2)\times: 假設\cases{\vec u=(1,1,0)\\ \vec v=(1,1,0)\\ \vec w=(0,0,2)}符合其條件,但\begin{vmatrix} a & b\\ c& d \end{vmatrix}=\begin{vmatrix} 1 & 1\\ 1& 1 \end{vmatrix}=0\\(3)\times: 假設\cases{\vec u=\vec v=(1,1,0)\\ \vec w=(0,0,1)\\ \vec w'=(1,-1,1)}符合其條件,但\begin{vmatrix} a & b\\ c& d \end{vmatrix}=\begin{vmatrix} 1 & 1\\ 1& 1 \end{vmatrix}=0\\(4)\bigcirc: \vec u,\vec v,\vec w線性獨立,即\vec u\not \parallel \vec v \Rightarrow \begin{vmatrix} a & b\\ c& d \end{vmatrix}=ad-bc\ne 0\\(5) \bigcirc: \begin{vmatrix} a & b\\ c& d \end{vmatrix}=ad-bc\ne 0 \Rightarrow \det(A)=t(ad-bc) \ne 0\\ 故選\bbox[red, 2pt]{(145)}$$
解答:$$(1)\bigcirc: E(X_1)=5\cdot {1\over 2}+7\cdot {1\over 2}=6\\ (2)\times: X_2=12 \Rightarrow 擲2次銅板出現正反或反正,機率為{1\over 4}+{1\over 4}={1\over 2}\ne {1\over 4} \\(3)\times:P(X_8=5)=0\\ (4)\bigcirc: 4與8位於對稱位置,銅板出現正或反機率相同,因此P(X_8=4)=P(X_8=8)\\ (5)\times: 擲8次銅板情形\cases{8正:4\\ 7正1反:6\\ 6正2反:8\\ 5正3反:10\\ 4正4反:12\\ 3正5反:2\\ 2正6反:4\\ 1正7反:6\\ 8反:8} \\\qquad \Rightarrow E(X_8)={1\over 2^8}(4C^8_8+6C^8_7+8C^8_6 +10C^8_5+12C^8_4+ 2 C^8_3+4C^8_2+6C^8_1+8C^8_0)\\\qquad ={1956\over 256}=7.64 \gt 7\\故選\bbox[red, 2pt]{(14)}$$
解答:$$(1)\times: z=2i \Rightarrow \cases{z^3=-8i \\ 4i\bar z=4i\times(-2i)=8} \Rightarrow z^3\ne 4i\bar z \\(2)\bigcirc: \alpha^3=4i\bar \alpha \Rightarrow |\alpha^3| =|4i\bar \alpha| = 4|\alpha| \Rightarrow |\alpha^2|=4 \Rightarrow |\alpha|=2\\ (3)\bigcirc: \beta=i\alpha \Rightarrow \bar \beta =\overline{i\alpha}= -i\bar \alpha\Rightarrow \cases{\beta^3=(i\alpha)^3= -i\alpha^3 =-i\times (4i\bar \alpha) =4\bar \alpha \\4i\bar \beta=4i(-i\bar \alpha) =4\bar \alpha} \\\quad \Rightarrow \beta^3= 4i\bar \beta \\(4)\times:z=re^{i\theta} \Rightarrow \cases{z^3 =r^3e^{3\theta i}\\ 4i\bar z=4e^{\pi i/2}\cdot re^{-i\theta}} \Rightarrow r^3e^{3\theta i}=4re^{(\pi/2-\theta)i} \\ \qquad \Rightarrow 3\theta={\pi\over 2}-\theta \Rightarrow \theta={\pi \over 8} \Rightarrow 最小主幅角={\pi \over 8}\ne {\pi \over 6} \\(5)\times: 由(3)知:若\alpha滿足z^3=4i\bar z,則i\alpha 也滿足,即\alpha旋轉90度也是其解,\\\qquad 因此\theta={\pi\over 8},{5\pi\over 8},{9 \pi\over 8},{13\pi\over 8}皆為其解,共有四個相異非零解\\ 故選\bbox[red, 2pt]{(23)}$$
$$令\angle CAB=\theta \Rightarrow \cos \theta={3+7-4\over 2\cdot \sqrt 3\cdot \sqrt 7} ={3\over \sqrt{21}} \Rightarrow \sin \theta ={2\sqrt{3}\over \sqrt{21}} \\ 又等腰\triangle MAB:\cos \angle AMB=\cos 120^\circ=-{1\over 2} ={\overline{MA}^2+\overline{MB}^2-7\over 2\cdot \overline{MA}\cdot \overline{MB}} \Rightarrow \overline{MA}=\overline{MB}={\sqrt {7\over 3}}\\ 同理,等腰\triangle NAC:\cos \angle ANC={\overline{NA}^2+\overline{NC}^2-3\over 2\cdot \overline{NA}\cdot \overline{NC}} \Rightarrow \overline{NA}=\overline{NC} =1\\ \triangle AMN: \cos \angle NAM =\cos(60^\circ+\theta)={1+7/3-\overline{MN}^2
\over 2\cdot \sqrt{7/3}} \\\Rightarrow \cos 60^\circ \cos\theta-\sin 60^\circ \sin \theta ={1\over 2}\cdot {3\over \sqrt{21}}-{\sqrt 3\over 2}\cdot {2\sqrt 3\over \sqrt{21}}=-{3\over 2\sqrt{21}} ={10/3-\overline{MN}^2 \over 2\sqrt{7/3}} \\ \Rightarrow-1={10\over 3}-\overline{MN}^2 \Rightarrow \overline{MN}^2= \bbox[red,2pt]{13\over 3}$$
\over 2\cdot \sqrt{7/3}} \\\Rightarrow \cos 60^\circ \cos\theta-\sin 60^\circ \sin \theta ={1\over 2}\cdot {3\over \sqrt{21}}-{\sqrt 3\over 2}\cdot {2\sqrt 3\over \sqrt{21}}=-{3\over 2\sqrt{21}} ={10/3-\overline{MN}^2 \over 2\sqrt{7/3}} \\ \Rightarrow-1={10\over 3}-\overline{MN}^2 \Rightarrow \overline{MN}^2= \bbox[red,2pt]{13\over 3}$$
$$\cases{E_1與E_2的法向量均為\vec u=(2,3,6)\\ L方向向量\vec v=(1,-2,2)} \Rightarrow \cos \theta ={\vec u\cdot \vec v\over |\vec u||\vec v|} ={8\over 21}\\ 又d(E_1,E_2)={14\over 7} =2 \Rightarrow E_1,E_2所截距離={d(E_1,E_2)\over \cos \theta} ={2\over 8/21}= \bbox[red, 2pt]{21\over 4}$$
解答:$$\cases{將P代入f(x) \Rightarrow {1\over 2}=a\\ 將P代入\Omega\Rightarrow 1+{1\over 4}-{3\over 2}+b=0 \Rightarrow b={1\over 4}}\Rightarrow \Omega:x^2+y^2-3y+{1\over 4}=0 \Rightarrow x^2+(y-{3\over 2})^2=2\\ \Rightarrow C(0,{3\over 2}) \Rightarrow \cases{\overrightarrow{CO}=(0,-{3\over 2}) \\\overrightarrow{CP}=(1,-1)} \Rightarrow \cos \theta={\overrightarrow{CO}\cdot \overrightarrow{CP} \over |\overrightarrow{CO}||\overrightarrow{CP}|} ={3/2\over 3\sqrt 2/2} =\bbox[red, 2pt]{\sqrt 2\over 2}$$
解答:$$y=f(x)=x^2/2 \Rightarrow y'=x \Rightarrow 在P(1,1/2)的切線斜率=1\\ \Omega:x^2+(y-{3\over 2})^2=2 \Rightarrow 2x+2(y-{3\over 2})y'=0 \Rightarrow y'=-{x\over y-3/2}\\\Rightarrow 在P的切線斜率= -{1\over 1/2-3/2}=1\\ 因此兩圖形在P點的切線斜相同,代表有共同的切線,即y=x-{1\over 2},\bbox[red,2pt]{故得證}$$
解答:$$P(-{5\over 3},{2\sqrt 5\over 3}) \Rightarrow \overline{OP}=\sqrt{45\over 9} =\sqrt 5 \Rightarrow 長軸=2\times \overline{OP}=\bbox[red, 2pt]{2\sqrt 5}$$
解答:$$長軸所在直線L=\overleftrightarrow{OP}斜率=-{2\sqrt 5/3\over 5/3}=-{2\over 5}\sqrt 5 \Rightarrow L:y=-{2\over 5}\sqrt 5x\\ \Rightarrow 短軸所在直線M:{y={5\over 2\sqrt 5}x} \Rightarrow\bbox[red, 2pt]{ y={\sqrt 5\over 2}x} \\ 將y={\sqrt 5\over 2}x代回橢圓方程 \Rightarrow x=\pm{4\over 3} \Rightarrow y=\pm {4\sqrt 5\over 6} \\\Rightarrow 短軸長=({4\over 3},{4\sqrt 5\over 6})至(-{4\over 3},-{4\sqrt 5\over 6})距離 =\bbox[red, 2pt]4$$
解答:$$\Gamma'與x軸的交點即為P',將y=0代入\Gamma' \Rightarrow 40x^2=180 \Rightarrow x={3\sqrt 2\over 2}\Rightarrow P'({3\sqrt 2\over 2},0)\\ 短軸直線M:y={\sqrt 5\over 2}x =\tan \theta \cdot x \Rightarrow \cases{\cos \theta =2/3\\ \sin \theta=\sqrt 5/3}\Rightarrow P逆時針旋轉\theta 為P' \\ \Rightarrow AP=P' (A為旋轉矩陣) \Rightarrow P=A^{-1}P' = \begin{bmatrix}2/3 & \sqrt 5/3\\ -\sqrt 5/3 & 2/3 \end{bmatrix} \begin{bmatrix} 3 \sqrt 2/2 \\0 \end{bmatrix} =\begin{bmatrix} \sqrt 2 \\-\sqrt{10} /2 \end{bmatrix}\\ \Rightarrow \bbox[red, 2pt]{ P(\sqrt 2,-{\sqrt{10}\over 2})}$$
================= END =================
解答:$$只能一個一個算,沒有好方法\\\begin{array}{}樣式&排列數\\\hline 1\bigcirc \bigcirc \bigcirc &含88,再從剩下7個數字挑1個來排列:C^7_1\times 3=21\\ 2\bigcirc \bigcirc \bigcirc & 21\\ \cdots\\ 5\bigcirc \bigcirc \bigcirc & 21\\\hdashline 6\bigcirc88 &\bigcirc=1,2,3,4,5,7,9,共 7個\\\hdashline 64 \bigcirc \bigcirc& 不含88有C^7_2\times 2=42\\ 65 \bigcirc \bigcirc& 不含88有C^7_2\times 2=42\\ 67 \bigcirc \bigcirc& 不含88有C^7_2\times 2=42\\ 69 \bigcirc \bigcirc& 不含88有C^7_2\times 2=42\\\hdashline 68\bigcirc \bigcirc& C^8_2\times 2=56\\\hdashline 7\bigcirc \bigcirc\bigcirc & 含88:C^7_1\times 3=21,不含88:C^8_3\times 3!=336\\9\bigcirc \bigcirc\bigcirc & 含88:C^7_1\times 3=21,不含88:C^8_3\times 3!=336\\\hdashline 8 \bigcirc \bigcirc\bigcirc & C^9_3\times 3!=504\\\hline \end{array} \\ 共有21\times 5+7+42\times 4+56+(21+336)\times 2+504=\bbox[red, 2pt]{1554}$$
另解:$$第一類:數字大於6400且數字相異\\ \quad 6\square\square\square:\cases{百位數字:45789,有5種選擇\\拾位數字:扣除千位,百位數字,剩下7種選擇 \\個位數字:剩下6種選擇} \Rightarrow 共有5\times 7\times 6=210種\\ \quad \fbox{789}\square\square\square :\cases{千位數字:789,有3種選擇\\百位數字:剩下8種選擇\\拾位數字:剩下7種選擇 \\個位數字:剩下6種選擇} \Rightarrow 共有3\times 8\times 7\times 6=1008種\\第二類:數字含有2個8\\ \quad 從8個數字挑6個有C^8_6種挑法,再與2個8湊成四位數排列,排列數{4!\over 2!}=12 \Rightarrow 共有6C^8_6=336種\\ 兩類共有210+1008+ 336= \bbox[red, 2pt]{1554}種$$
第 貳 部 分 、 混 合 題 或 非 選 擇 題 ( 占 24 分 )
解答:$$\cases{將P代入f(x) \Rightarrow {1\over 2}=a\\ 將P代入\Omega\Rightarrow 1+{1\over 4}-{3\over 2}+b=0 \Rightarrow b={1\over 4}}\Rightarrow \Omega:x^2+y^2-3y+{1\over 4}=0 \Rightarrow x^2+(y-{3\over 2})^2=2\\ \Rightarrow C(0,{3\over 2}) \Rightarrow \cases{\overrightarrow{CO}=(0,-{3\over 2}) \\\overrightarrow{CP}=(1,-1)} \Rightarrow \cos \theta={\overrightarrow{CO}\cdot \overrightarrow{CP} \over |\overrightarrow{CO}||\overrightarrow{CP}|} ={3/2\over 3\sqrt 2/2} =\bbox[red, 2pt]{\sqrt 2\over 2}$$
解答:$$y=f(x)=x^2/2 \Rightarrow y'=x \Rightarrow 在P(1,1/2)的切線斜率=1\\ \Omega:x^2+(y-{3\over 2})^2=2 \Rightarrow 2x+2(y-{3\over 2})y'=0 \Rightarrow y'=-{x\over y-3/2}\\\Rightarrow 在P的切線斜率= -{1\over 1/2-3/2}=1\\ 因此兩圖形在P點的切線斜相同,代表有共同的切線,即y=x-{1\over 2},\bbox[red,2pt]{故得證}$$
解答:
$$先求兩圖形交點: 將y={1\over 2}x^2代入\Omega \Rightarrow x^2+({1\over 2}x^2-{3\over 2})^2=2 \Rightarrow {1\over 4}x^4-{1\over 2}x^2+{1\over 4}=0 \\ \Rightarrow (x^2-1)^2=0 \Rightarrow x=\pm 1 \Rightarrow 交點\cases{P(1,1/2)\\ Q(-1,1/2)} \\又\cases{\overline{CP}=\overline{CQ}=半徑=\sqrt 2\\ \overline{PQ}=2} \Rightarrow \angle PCQ=90^\circ \Rightarrow 扇形CPQ(藍色區域)面積={\pi \over 2}(四分之一圓)\\ y=f(x)與x軸所圍(黃色區域)面積=\int_{-1}^1 {1\over 2}x^2\,dx ={1\over 3}\\ 欲求之面積=\triangle CPQ+矩形PQRS-藍色-黃色=1+1-{\pi\over 2}-{1\over 3}=\bbox[red, 2pt]{{5\over 3}-{\pi \over 2}}$$
解答:$$長軸所在直線L=\overleftrightarrow{OP}斜率=-{2\sqrt 5/3\over 5/3}=-{2\over 5}\sqrt 5 \Rightarrow L:y=-{2\over 5}\sqrt 5x\\ \Rightarrow 短軸所在直線M:{y={5\over 2\sqrt 5}x} \Rightarrow\bbox[red, 2pt]{ y={\sqrt 5\over 2}x} \\ 將y={\sqrt 5\over 2}x代回橢圓方程 \Rightarrow x=\pm{4\over 3} \Rightarrow y=\pm {4\sqrt 5\over 6} \\\Rightarrow 短軸長=({4\over 3},{4\sqrt 5\over 6})至(-{4\over 3},-{4\sqrt 5\over 6})距離 =\bbox[red, 2pt]4$$
解答:$$\Gamma'與x軸的交點即為P',將y=0代入\Gamma' \Rightarrow 40x^2=180 \Rightarrow x={3\sqrt 2\over 2}\Rightarrow P'({3\sqrt 2\over 2},0)\\ 短軸直線M:y={\sqrt 5\over 2}x =\tan \theta \cdot x \Rightarrow \cases{\cos \theta =2/3\\ \sin \theta=\sqrt 5/3}\Rightarrow P逆時針旋轉\theta 為P' \\ \Rightarrow AP=P' (A為旋轉矩陣) \Rightarrow P=A^{-1}P' = \begin{bmatrix}2/3 & \sqrt 5/3\\ -\sqrt 5/3 & 2/3 \end{bmatrix} \begin{bmatrix} 3 \sqrt 2/2 \\0 \end{bmatrix} =\begin{bmatrix} \sqrt 2 \\-\sqrt{10} /2 \end{bmatrix}\\ \Rightarrow \bbox[red, 2pt]{ P(\sqrt 2,-{\sqrt{10}\over 2})}$$
================= END =================
老師好 您好像沒貼到第11題
回覆刪除這麼晚還不睡, 已經貼好了!!!
刪除選填11可以分成兩類,四異且大於6400共有1*5*7*6+3*8*7*6=1218加上兩張8的有C(8,2)*4!/2!=336總共1554
回覆刪除謝謝指教,我把這種解法放在「另解」供大家參考!
刪除想請問老師~
回覆刪除第6題為什麼t不會等於0 題幹沒有對t有限制 第五個選項當t=0的時候
行列式值就會是0阿
用外積公式 選項5前面一句算出來就是t 所以t確定不等於0 因此行列式算出來就不等於0
刪除