中國文化大學107學年度碩士班考試入學
系組:化學及材料奈米碩士班
科目:工程數學
解答:(a)y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2代回原式⇒m(m−1)xm−3mxm+4xm=0⇒xm(m2−4m+4)=0⇒m=2(重根)⇒y=C1x2+C2x2lnx⇒y′=(2C1+C2)x+2C2xlnx將{y(1)=4y′(1)=5代入⇒{C1=42C1+C2=5⇒C2=−3⇒y=4x2−3x2lnx(b)先求齊次解,即y″−y′−2y=0⇒λ2−λ−2=0⇒λ=2,−1⇒yh=C1e2x+C2e−x再假設yp=Acosx+Bsinx⇒y′=−Asinx+Bcosx⇒y″=−Acosx−Bsinx⇒−Acosx−Bsinx+Asinx−Bcosx−2Acosx−2Bsinx=(−3A−B)cosx+(A−3B)sinx=10cosx⇒{−3A−B=10A−3B=0⇒{A=−3B=−1⇒y=yh+yp=C1e2x+C2e−x−3cosx−sinx⇒y′=2C1e2x−C2e−x+3sinx−cosx再將{y(0)=2y′(0)=1代入⇒{C1+C2−3=22C1−C2−1=1⇒{C1=7/3C2=8/3⇒y=73e2x+83e−x−3cosx−sinx(c)令{M(x,y)=2xy4+sinyN(x,y)=4x2y3+xcosy⇒{∂∂yM=8xy3+cosy∂∂xN=8xy3+cosy⇒∂∂yM=∂∂xN取Ψ(x,y)=∫Mdx=∫Ndy⇒Ψ=∫2xy4+sinydx=∫4x2y3+xcosydy⇒Ψ=x2y4+xsiny+ϕ(y)=x2y4+xsiny+ρ(x)⇒x2+y4+xsiny=C解答:L{sinkt}=I=∫∞0sin(kt)e−stdt=−1se−stsin(kt)+ks∫cos(kt)e−stdt=−1se−stsin(kt)−ks2cos(kt)e−st−k2s2I⇒(1+k2s2)I=[−1se−stsin(kt)−ks2cos(kt)e−st]|∞0⇒s2+k2s2I=ks2⇒I=ks2⋅s2s2+k2=ks2+k2⇒L{sinkt}=ks2+k2,故得證
解答:det
4. (20%) Find the particular solution of following differential equation: \cases{{dx\over dt}=2x+y+ 4e^{2t}\\ {dy\over dt} = x+2y} which satisfies the initial conduction \cases{x(0)=4 \\ y(0)=1}
解答:\cases{x'= 2x+y+4e^{2t} \cdots(1)\\ y'=x+2y\cdots(2)},式(2) \Rightarrow x=y'-2y \Rightarrow x'=y''-2y'\\ 將\cases{x=y'-2y\\ x'=y''-2y'} 代入(1) \Rightarrow y''-2y'=2(y'-2y)+ y+ 4e^{2t} \Rightarrow y''-4y'+3y=4e^{2t} \cdots(3)\\ \Rightarrow \cases{y_h =C_1e^{3t}+ C_2e^t\\ y_p= ke^{2t}} 將y_p'=2ke^{2t},y_p'' =4ke^{2t} 代入(3) \Rightarrow k=-4 \Rightarrow y=C_1e^{3t}+ C_2e^t-4e^{2t}\\ \Rightarrow x=y'-2y= C_1e^{3t}-C_2e^t;最後將\cases{x(0)= 4\\ y(0)=1}代入\Rightarrow \cases{C_1-C_2= 4\\ C_1+C_2-4 = 1} \\ \Rightarrow \cases{C_1=9/2\\ C_2= 1/2} \Rightarrow \bbox[red, 2pt]{\cases{x= {9\over 2} e^{3t}-{1\over 2}e^t\\ y= {9\over 2} e^{3t}+{1\over 2}e^t -4e^{2t}}}
==================== END =======================
沒有留言:
張貼留言