Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2023年1月30日 星期一

107年文化大學碩士班-工程數學詳解

中國文化大學107學年度碩士班考試入學

系組:化學及材料奈米碩士班
科目:工程數學

解答(a)y=xmy=mxm1y=m(m1)xm2m(m1)xm3mxm+4xm=0xm(m24m+4)=0m=2(y=C1x2+C2x2lnxy=(2C1+C2)x+2C2xlnx{y(1)=4y(1)=5{C1=42C1+C2=5C2=3y=4x23x2lnx(b)yy2y=0λ2λ2=0λ=2,1yh=C1e2x+C2exyp=Acosx+Bsinxy=Asinx+Bcosxy=AcosxBsinxAcosxBsinx+AsinxBcosx2Acosx2Bsinx=(3AB)cosx+(A3B)sinx=10cosx{3AB=10A3B=0{A=3B=1y=yh+yp=C1e2x+C2ex3cosxsinxy=2C1e2xC2ex+3sinxcosx{y(0)=2y(0)=1{C1+C23=22C1C21=1{C1=7/3C2=8/3y=73e2x+83ex3cosxsinx(c){M(x,y)=2xy4+sinyN(x,y)=4x2y3+xcosy{yM=8xy3+cosyxN=8xy3+cosyyM=xNΨ(x,y)=Mdx=NdyΨ=2xy4+sinydx=4x2y3+xcosydyΨ=x2y4+xsiny+ϕ(y)=x2y4+xsiny+ρ(x)x2+y4+xsiny=C
解答L{sinkt}=I=0sin(kt)estdt=1sestsin(kt)+kscos(kt)estdt=1sestsin(kt)ks2cos(kt)estk2s2I(1+k2s2)I=[1sestsin(kt)ks2cos(kt)est]|0s2+k2s2I=ks2I=ks2s2s2+k2=ks2+k2L{sinkt}=ks2+k2,

解答det

4. (20%) Find the particular solution of following differential equation:

\cases{{dx\over dt}=2x+y+ 4e^{2t}\\ {dy\over dt} = x+2y} which satisfies the initial conduction \cases{x(0)=4 \\ y(0)=1}

解答\cases{x'= 2x+y+4e^{2t} \cdots(1)\\ y'=x+2y\cdots(2)},式(2) \Rightarrow x=y'-2y \Rightarrow x'=y''-2y'\\ 將\cases{x=y'-2y\\ x'=y''-2y'} 代入(1) \Rightarrow y''-2y'=2(y'-2y)+ y+ 4e^{2t} \Rightarrow y''-4y'+3y=4e^{2t} \cdots(3)\\ \Rightarrow \cases{y_h =C_1e^{3t}+ C_2e^t\\ y_p= ke^{2t}} 將y_p'=2ke^{2t},y_p'' =4ke^{2t} 代入(3) \Rightarrow k=-4 \Rightarrow y=C_1e^{3t}+ C_2e^t-4e^{2t}\\ \Rightarrow x=y'-2y= C_1e^{3t}-C_2e^t;最後將\cases{x(0)= 4\\ y(0)=1}代入\Rightarrow \cases{C_1-C_2= 4\\ C_1+C_2-4 = 1} \\ \Rightarrow \cases{C_1=9/2\\ C_2= 1/2} \Rightarrow \bbox[red, 2pt]{\cases{x= {9\over 2} e^{3t}-{1\over 2}e^t\\ y= {9\over 2} e^{3t}+{1\over 2}e^t -4e^{2t}}}
 

==================== END =======================
解題僅供參考,其他歷年試題及詳解


沒有留言:

張貼留言