Processing math: 100%

2023年1月30日 星期一

107年文化大學碩士班-工程數學詳解

中國文化大學107學年度碩士班考試入學

系組:化學及材料奈米碩士班
科目:工程數學

解答(a)y=xmy=mxm1y=m(m1)xm2m(m1)xm3mxm+4xm=0xm(m24m+4)=0m=2(y=C1x2+C2x2lnxy=(2C1+C2)x+2C2xlnx{y(1)=4y(1)=5{C1=42C1+C2=5C2=3y=4x23x2lnx(b)yy2y=0λ2λ2=0λ=2,1yh=C1e2x+C2exyp=Acosx+Bsinxy=Asinx+Bcosxy=AcosxBsinxAcosxBsinx+AsinxBcosx2Acosx2Bsinx=(3AB)cosx+(A3B)sinx=10cosx{3AB=10A3B=0{A=3B=1y=yh+yp=C1e2x+C2ex3cosxsinxy=2C1e2xC2ex+3sinxcosx{y(0)=2y(0)=1{C1+C23=22C1C21=1{C1=7/3C2=8/3y=73e2x+83ex3cosxsinx(c){M(x,y)=2xy4+sinyN(x,y)=4x2y3+xcosy{yM=8xy3+cosyxN=8xy3+cosyyM=xNΨ(x,y)=Mdx=NdyΨ=2xy4+sinydx=4x2y3+xcosydyΨ=x2y4+xsiny+ϕ(y)=x2y4+xsiny+ρ(x)x2+y4+xsiny=C
解答L{sinkt}=I=0sin(kt)estdt=1sestsin(kt)+kscos(kt)estdt=1sestsin(kt)ks2cos(kt)estk2s2I(1+k2s2)I=[1sestsin(kt)ks2cos(kt)est]|0s2+k2s2I=ks2I=ks2s2s2+k2=ks2+k2L{sinkt}=ks2+k2,

解答det(MλI)=k(λ+1)(λ4)(λ9)|αλ03β0αλ4β3β4βαλ|=(αλ)325β2(αλ)=(αλ)(αλ+5β)(αλ5β)(λα)(λα5β)(λα+5β)=k(λ+1)(λ4)(λ9){α=4α+5β=9α5β=1{α=4β=1

4. (20%) Find the particular solution of following differential equation:

{dxdt=2x+y+4e2tdydt=x+2y which satisfies the initial conduction {x(0)=4y(0)=1

解答{x=2x+y+4e2t(1)y=x+2y(2),(2)x=y2yx=y2y{x=y2yx=y2y(1)y2y=2(y2y)+y+4e2ty4y+3y=4e2t(3){yh=C1e3t+C2etyp=ke2typ=2ke2t,yp=4ke2t(3)k=4y=C1e3t+C2et4e2tx=y2y=C1e3tC2et{x(0)=4y(0)=1{C1C2=4C1+C24=1{C1=9/2C2=1/2{x=92e3t12ety=92e3t+12et4e2t
 

==================== END =======================
解題僅供參考,其他歷年試題及詳解


沒有留言:

張貼留言