國立中山大學112學年度碩士班暨碩士在職專班招生考試
科目名稱:工程數學【材光系碩士班選考,材料前瞻應材碩士班選考,材光聯合碩士班選考】
解答:積分因子μ(x)=e∫tanxdx=secx⇒y′secx+ysecxtanx=secxsin(2x)⇒(ysecx)′=2sinx⇒ysecx=∫2sinxdx=−2cosx+C⇒y=−2cos2x+Ccosx將初始值y(0)=1代入上式⇒−2+C=1⇒C=3⇒y=−2cos2x+3cosx
解答:y′+y=−xy⇒2yy′+2y2=−2x⇒v′+2v=−2x,其中v(x)=y2(x) 積分因子 μ=e∫2dx=e2x⇒v′e2x+2ve2x=−2xe2x⇒(ve2x)′=−2xe2x⇒ve2x=∫−2xe2xdx=12e2x(1−2x)+C⇒v=y2=12(1−2x)+Ce−2xy(0)=1⇒C=12⇒y2=12(1−2x+e−2x)⇒y=√1−2x+e−2x2解答:先求齊次解:xy′+4y=0,取y=xm⇒y′=mxm−1代回原式⇒(m+4)xm=0⇒m=−4⇒yh=Cx−4又取yp=Ax4⇒y′p=4Ax3代回原式⇒8Ax4=8x4⇒A=1⇒yp=x4y=yh+yp=Cx−4+x4,由於y(1)=2⇒2=C+1⇒C=1⇒y=x4+1x4
解答:取y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒y‴=m(m−1)(m−2)xm−3⇒x3y‴+3x2y″−6xy′−6y=(m(m−1)(m−2)+3m(m−1)−6m−6)xm=0⇒(m+1)(m+2)(m−3)xm=0⇒m=−1,−2,3⇒y=C1x−1+C2x−2+C3x3
解答:先求齊次解:y″−3y′+2y=0⇒(λ−2)(λ−1)=0⇒λ=1,2⇒yh=C1ex+C2e2x取yp=Axe2x+Bx2+Cx+D⇒y′p=Ae2x+2Axe2x+2Bx+C⇒y″p=4Ae2x+4Axe2x+2B⇒y″p−3y′p+2yp=Ae2x+2Bx2+(2C−6B)x+2B−3C+2D=3e2x+2x2−7⇒{A=3B=1C=3D=0⇒yp=3xe2x+x2+3x⇒y=yh+yp=C1ex+C2e2x+3xe2x+x2+3x⇒y′=C1ex+(2C2+3)e2x+6xe2x+2x+3⇒{y(0)=1=C1+C2y′(0)=0=C1+2C2+6⇒{C1=8C2=−7⇒y=8ex−7e2x+3xe2x+x2+3x
解答:{y′1=−y1−y2y′2=y1−y2⇒y′=[−1−11−1]y=Ay求矩陣A的特徵值及特徵向量:det
解答:\mathbf{(a)}\;L^{-1}\{{2\over s^4} \}-L^{-1}\{{48\over s^6} \} ={1\over 3}L^{-1}\{{3!\over s^4} \}-{2\over 5}L^{-1}\{{5!\over s^6} \} =\bbox[red, 2pt]{{1\over 3}t^4-{2\over 5}t^5} \\\mathbf{(b)}\; L^{-1} \{{6s+7\over 2s^2+4s+10}\} =L^{-1} \{3\cdot {s+1\over (s+1)^2+2^2}+ {1\over 4}\cdot {2 \over (s+1)^2+2^2}\} \\\quad = \bbox[red, 2pt]{3e^{-t}\cos (2t)+{1\over 4}e^{-t}\sin(2t)}
解答:L\{y''\}-{1\over 4}L\{ y\} =s^2Y(s)-sy(0)-y'(0)-{1\over 4}Y(s)=(s^2-{1\over 4})Y(s)-12s=0 \\ \Rightarrow Y(s)={12s\over s^2-1/4}={6\over s+1/2}+{6\over s-1/2}\\ \Rightarrow y(t)=L^{-1}\{Y(s)\}=6L^{-1}\{{1\over s+1/2}\}+ 6L^{-1}\{{1\over s-1/2}\} =6(e^{-t/2} +e^{t/2}) \\ \Rightarrow \bbox[red, 2pt]{y(t)= 6(e^{-t/2} +e^{t/2})}

解答:取w(t)=y(t+2) \Rightarrow y''+2y'-3y=w''+2w'-3w=0 \\\Rightarrow L\{w''\}+2 L\{ w'\}-3L\{w\} =s^2W(s)-sw(0)-w'(0)+2(sW(s)-w(0))-3W(s)\\ =(s^2+2s-3)W(s)+ 3s+11=0 \Rightarrow W(s)=-{3s+11\over s^2+2s-3}={1\over 2}\cdot {1\over s+3}-{7\over 2}\cdot {1\over s-1} \\ \Rightarrow w(t)=L^{-1}\{W(s)\}={1\over 2} e^{-3t}-{7\over 2}e^t \Rightarrow w(t-2)= \bbox[red, 2pt]{y(t)={1\over 2} e^{-3(t-2)}-{7\over 2}e^{t-2}}
沒有留言:
張貼留言