Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2023年5月19日 星期五

112年中山大學碩士班-工程數學詳解

國立中山大學112學年度碩士班暨碩士在職專班招生考試

科目名稱:工程數學【材光系碩士班選考,材料前瞻應材碩士班選考,材光聯合碩士班選考】

解答μ(x)=etanxdx=secxysecx+ysecxtanx=secxsin(2x)(ysecx)=2sinxysecx=2sinxdx=2cosx+Cy=2cos2x+Ccosxy(0)=12+C=1C=3y=2cos2x+3cosx
解答y+y=xy2yy+2y2=2xv+2v=2x,v(x)=y2(x)   μ=e2dx=e2xve2x+2ve2x=2xe2x(ve2x)=2xe2xve2x=2xe2xdx=12e2x(12x)+Cv=y2=12(12x)+Ce2xy(0)=1C=12y2=12(12x+e2x)y=12x+e2x2
解答xy+4y=0,y=xmy=mxm1(m+4)xm=0m=4yh=Cx4yp=Ax4yp=4Ax38Ax4=8x4A=1yp=x4y=yh+yp=Cx4+x4,y(1)=22=C+1C=1y=x4+1x4
解答y=xmy=mxm1y=m(m1)xm2y=m(m1)(m2)xm3x3y+3x2y6xy6y=(m(m1)(m2)+3m(m1)6m6)xm=0(m+1)(m+2)(m3)xm=0m=1,2,3y=C1x1+C2x2+C3x3


解答y3y+2y=0(λ2)(λ1)=0λ=1,2yh=C1ex+C2e2xyp=Axe2x+Bx2+Cx+Dyp=Ae2x+2Axe2x+2Bx+Cyp=4Ae2x+4Axe2x+2Byp3yp+2yp=Ae2x+2Bx2+(2C6B)x+2B3C+2D=3e2x+2x27{A=3B=1C=3D=0yp=3xe2x+x2+3xy=yh+yp=C1ex+C2e2x+3xe2x+x2+3xy=C1ex+(2C2+3)e2x+6xe2x+2x+3{y(0)=1=C1+C2y(0)=0=C1+2C2+6{C1=8C2=7y=8ex7e2x+3xe2x+x2+3x
解答{y1=y1y2y2=y1y2y=[1111]y=Aydet
解答\mathbf{(a)}\;L^{-1}\{{2\over s^4} \}-L^{-1}\{{48\over s^6} \} ={1\over 3}L^{-1}\{{3!\over s^4} \}-{2\over 5}L^{-1}\{{5!\over s^6} \} =\bbox[red, 2pt]{{1\over 3}t^4-{2\over 5}t^5} \\\mathbf{(b)}\; L^{-1} \{{6s+7\over 2s^2+4s+10}\} =L^{-1} \{3\cdot {s+1\over (s+1)^2+2^2}+ {1\over 4}\cdot {2 \over (s+1)^2+2^2}\} \\\quad = \bbox[red, 2pt]{3e^{-t}\cos (2t)+{1\over 4}e^{-t}\sin(2t)}
解答L\{y''\}-{1\over 4}L\{ y\} =s^2Y(s)-sy(0)-y'(0)-{1\over 4}Y(s)=(s^2-{1\over 4})Y(s)-12s=0 \\ \Rightarrow Y(s)={12s\over s^2-1/4}={6\over s+1/2}+{6\over s-1/2}\\ \Rightarrow y(t)=L^{-1}\{Y(s)\}=6L^{-1}\{{1\over s+1/2}\}+ 6L^{-1}\{{1\over s-1/2}\} =6(e^{-t/2} +e^{t/2}) \\ \Rightarrow \bbox[red, 2pt]{y(t)= 6(e^{-t/2} +e^{t/2})}

解答取w(t)=y(t+2) \Rightarrow y''+2y'-3y=w''+2w'-3w=0 \\\Rightarrow L\{w''\}+2 L\{ w'\}-3L\{w\} =s^2W(s)-sw(0)-w'(0)+2(sW(s)-w(0))-3W(s)\\ =(s^2+2s-3)W(s)+ 3s+11=0 \Rightarrow W(s)=-{3s+11\over s^2+2s-3}={1\over 2}\cdot {1\over s+3}-{7\over 2}\cdot {1\over s-1} \\ \Rightarrow w(t)=L^{-1}\{W(s)\}={1\over 2} e^{-3t}-{7\over 2}e^t \Rightarrow w(t-2)= \bbox[red, 2pt]{y(t)={1\over 2} e^{-3(t-2)}-{7\over 2}e^{t-2}}

沒有留言:

張貼留言