臺灣綜合大學系統112學年度學士班轉學生聯合招生
類組代碼:D36
科目名稱:工程數學
解答:(a)先求齊次解,y‴+y′=0⇒λ3+λ=0⇒λ(λ2+1)=0⇒λ=0,±i⇒yh=c1+c2cosx+c3sinx又r(x)=sinx⇒非齊次解yp=Axsinx⇒y′p=Asinx+Axcosx⇒y″p=2Acosx−Axsinx⇒y‴p=−3Asinx−Axcosx⇒y‴p+y′p=−2Asinx=sinx⇒A=−12⇒yp=−12xsinx⇒y=yh+yp⇒y=c1+c2cosx+c3sinx−12xsinx(b)L{y″−4y}=L{−7e2x+x}⇒s2Y(s)−sy(0)−y′(0)−4Y(s)=−7s−2+1s2⇒(s2−4)Y(s)=s+3−7s−2+1s2⇒Y(s)=s+3s2−4−7(s−2)2(s+2)+1s2(s2−4)⇒y(x)=L−1{−14(s+2)+54(s−2)−716(s−2)−74(s−2)2−716(s+2)−14s2−116(s+2)+116(s−2)}=−14e−2x+54e2x+716e2x−74xe2x−716e−2x−x4−116e−2x+116e2x⇒y=14(−3e−2x+7e2x−7xe2x−x)解答:P=A(ATA)−1AT⇒P2=A(ATA)−1ATA(ATA)−1AT=A(ATA)−1AT=P⇒P3=P=16[52−1222−125]
解答:若A=[abcd]⇒A−1=[dad−bc−bad−bc−cad−bcaad−bc]⇒det
解答:b_n={2\over \pi}\int_0^\pi 1\cdot \sin(nx)\,dx = {2\over \pi} \left. \left[-{1\over n} \cos(nx) \right] \right|_0^\pi ={2\over n\pi}(1-(-1)^n)= {4\over n\pi}, n為奇數\\ \Rightarrow f(x)=1= \sum_{n=1}^\infty b_n\sin(nx) = \bbox[red, 2pt]{{4\over \pi}(\sin(x)+{1\over 3}\sin(3x)+ {1\over 5}\sin(5x)+\cdots)}\\ \Rightarrow f(1)=1={4 \over \pi}(\sin 1+{1\over 3}\sin 3+{1\over 5}\sin 5+\cdots)\\ \Rightarrow \sin 1+{1\over 3}\sin 3+{1\over 5}\sin 5+\cdots={4\over \pi}, \bbox[red,2pt]{故得證}
解答:假設u(x,t)= X(x)T(t),則u_t=ku_{xx} \Rightarrow XT'=kX''T \Rightarrow {T'\over kT} ={X''\over X}=\lambda 為一常數\\ \text{case I }{\lambda \gt 0:} X''-\lambda X=0 \Rightarrow X= c_1e^{\sqrt \lambda x} +c_2e^{-\sqrt \lambda x} \Rightarrow X'=c_1\sqrt \lambda e^{\sqrt \lambda x}- c_2\sqrt \lambda e^{-\sqrt \lambda x}\\ \qquad 初始值\cases{X'(0)=0 \\ X'(L)=0} \Rightarrow \cases{c_1\sqrt \lambda-c_2\sqrt \lambda=0 \cdots(1)\\ c_1\sqrt \lambda e^{\sqrt \lambda L}-c_2\sqrt \lambda e^{-\sqrt \lambda L}=0 \cdots(2)}\\ \qquad 由(1)得c_1=c_2 代入(2) \Rightarrow c_1\sqrt \lambda(e^{2\sqrt \lambda L}-1)=0 \Rightarrow c_1=0 \Rightarrow X=0 明顯解不討論\\ \text{Case II }\lambda=0: X''=0 \Rightarrow X=c_1x+c_2 \Rightarrow X'=c_1\\ \qquad 初始值\cases{X'(0)=0 \\ X'(L)=0} \Rightarrow c_1=0 \Rightarrow X=c_2,又T'=0 \Rightarrow T=c_3 \\ \qquad u(x,t)=c_2c_3,此時我們可假設u(x,t)=C常數解\\ \text{Case III }\lambda=-\rho^2 \lt 0: X''+\rho^2 X=0 \Rightarrow X=A\cos \rho x+ B\sin \rho x \Rightarrow X'=-A\rho \sin \rho x+B \rho \cos \rho x\\ \qquad 初始值\cases{X'(0)=0\\ X'(L)=0} \Rightarrow \cases{B\rho =0 \Rightarrow B=0\\ -A\rho \sin \rho L +B\rho \cos \rho L=0} \Rightarrow \cases{A=B=0 \Rightarrow X=0明顯解,不討論\\ \sin \rho L=0} \\ \qquad \Rightarrow \rho L=n\pi \Rightarrow \rho ={n\pi\over L} \Rightarrow X=\cos {n\pi \over L}x ,n\in \mathbb N,此時T'+\rho^2k T=0 \Rightarrow T=Ce^{-\rho^2kt}\\ \qquad \Rightarrow u_n(x,t)=Ce^{-\rho^2kt} \cos n\pi x/L\\ 將\lambda=0,\lambda=-\rho^2的結果合併,可得 u(x,t)=a_0+ \sum_{n=1}^\infty a_n e^{-kn^2\pi^2t/L^2} \cos(n\pi x/L) \\ \Rightarrow \lim_{t\to \infty}u(x,t)=a_0 ={1\over L}\int_0^L f(x)\,dx 也就是f(x)在區間(0,L)與x軸所圍的面積=\bbox[red,2pt]{平均溫度}
解答:\mathbf{(a)}\;f(x,y)=\ln(x^2+y^2+1)+e^{2xy} \Rightarrow \cases{f_x=2x/(x^2+y^2+1) +2ye^{2xy} \\ f_y=2y/(x^2+y^2+1) +2xe^{2xy}} \\ \Rightarrow \text{gradient of }f= \nabla f=(f_x,f_y) \Rightarrow \nabla f(0,-2)=\bbox[red, 2pt]{(-4,-4/5)} \\\mathbf{(b)}\; \nabla f(0,-2)\cdot {\mathbf v\over \Vert \mathbf v\Vert} =(-4,-{4\over 5}) \cdot {(7,-24) \over \sqrt{7^2+24^2}} =(-4,-{4\over 5}) \cdot ({7\over 25},-{24\over 25})= \bbox[red, 2pt]{4\over 5} \\ \mathbf{(c)}\; \text{minimum value of the directional derivative} =-\nabla f(0,-2)\cdot {\nabla f(0,-2) \over \Vert \nabla f(0,-2)\Vert} \\=-\sqrt{(-4)^2+(-{4\over 5})^2}=-\sqrt{416\over 25} =\bbox[red, 2pt]{-{4\sqrt{26}}\over 5} ==================== END ====================
沒有留言:
張貼留言