台灣聯合大學系統112學年度學士班轉學生考試
科目:微積分
類組別:A2
甲、填充題:共8題,每題8分
解答:limx→0+(1x−1ex−1)=limx→0+ex−x−1x(ex−1)=limx→0+(ex−x−1)′(x(ex−1))′=limx→0+ex−1ex−1+xex=limx→0+(ex−1)′(ex−1+xex)′=limx→0+ex2ex+xex=12解答:ddxsinx=cosx=sin(x+π2)⇒dndxnsinx=sin(x+n2π)ddx(xsinx)=sinx+xsin(x+π2)⇒d2dx2(xsinx)=2sin(x+12π)+xsin(x+22π)⇒dndxn(xsinx)=nsin(x+n−12π)+xsin(x+n2π)⇒d2023dx2023(xsinx)=2023sin(x+20222π)+xsin(x+20232π)=−2023sinx+xcos(x+1011π)=−2023sinx−xcosx
解答:∫4−1dx√|x|=∫10dx√x+∫40dx√x=2+4=6
解答:∫80∫23√x1y4+1dydx=∫20∫y301y4+1dxdy=∫20y3y4+1dy=[14ln(y4+1)]|20=14ln17
解答:∫e1(ln(x))2πdx=[π(x(lnx)2−2xln(x)+2x)]|e1=π(e−2)
解答:y=(sinx)x=exlnsinx⇒dydx=(lnsinx+xcosxsinx)exlnsinx=(lnsinx+xcotx)(sinx)x
解答:若a>0⇒{limx→∞√ax2+4x−b=√alimx→−∞√ax2+4x−b=−√a⇒有兩條水平漸近線y=±√a
8. We say that the two commodities are substitute commodities if a decrease in the demand for one results in an increase in the demand for the other. Conversely, two commodities are referred to as complementary commodities if a decrease in the demand for on results in a decrease in the demand for the other as well. Suppose that the demand equations that relate the quantities demanded x and y to the unit prices p and q of the commodities A and B respectively are given by x=f(p,q)=q2q+p2 and y=q(p,q)=e−2q+p. Are A and B subtitute, complementary or neighter?
乙、計算、證明題: 共3題,每題12分,共36分
解答:(a)0≤|xsin(1x)|≤|x|⇒0≤limx→0|xsin(1x)|≤limx→0|x|=0⇒0≤limx→0|xsin(1x)|≤0由夾擠定理得limx→0|xsin(1x)|=0⇒limx→0xsin(1x)=0⇒在x=0,f是連續的,故得證(b)x≠0⇒f′(x)=sin(1x)+xcos(1x)⋅(−1x2)=sin(1x)−1xcos(1x)(c)limh→0f(0+h)−f(0)h=limh→0hsin(1/h)−0h=limh→0sin(1h)不存在⇒f在x=0不可微,故得證解答:(a)∫∞1xx2+4dx=[12ln(x2+4)]|∞1=∞⇒diverge(b)limn→∞|an+1an|=limn→∞|(√n+2−√n+1)(x−3)n+1(√n+1−√n)(x−3)n|=|x−3|<1⇒2<x<4x=4⇒∞∑n=1(√n+1−√n)(x−3)n=∞∑n=1(√n+1−√n),利用integral test:∫∞1√x+1−√xdx=∞⇒發散x=2⇒∞∑n=1(√n+1−√n)(x−3)n=∞∑n=1(√n+1−√n)(−1)n利用Alternating Series Test: {limn→∞(√n+1−√n)=0(√n+1−√n)−(√n+2−√n+1)≥0⇒收斂 因此2≤x<4,級數收斂
解答:此題相當於求:在條件0≤200x+300y≤60000下,求f(x,y)=100x3/4y1/4的最大化利用Lagrange 算子求極值: {f(x,y)=100x3/4y1/4g(x,y)=200x+300y−60000⇒{fx=λgxfy=λgyg=0⇒{75x−1/4y1/4=λ⋅20025x3/4y−3/4=λ⋅300⇒3yx=23⇒y=29x⇒200x+300⋅29x=6000⇒x=225⇒y=50⇒當{x=225y=50時,f(x,y)有最大值 ==================== END =========================
沒有留言:
張貼留言